11,525 research outputs found

    Whirling skirts and rotating cones

    Full text link
    Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, aNoether is the current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented which bear a suggestive resemblance to the observed patterns.Comment: two additional figures, changes to text throughout. journal version will have a wordier abstrac

    Dipoles in thin sheets

    Full text link
    A flat elastic sheet may contain pointlike conical singularities that carry a metrical "charge" of Gaussian curvature. Adding such elementary defects to a sheet allows one to make many shapes, in a manner broadly analogous to the familiar multipole construction in electrostatics. However, here the underlying field theory is non-linear, and superposition of intrinsic defects is non-trivial as it must respect the immersion of the resulting surface in three dimensions. We consider a "charge-neutral" dipole composed of two conical singularities of opposite sign. Unlike the relatively simple electrostatic case, here there are two distinct stable minima and an infinity of unstable equilibria. We determine the shapes of the minima and evaluate their energies in the thin-sheet regime where bending dominates over stretching. Our predictions are in surprisingly good agreement with experiments on paper sheets.Comment: 20 pages, 5 figures, 2 table

    Force dipoles and stable local defects on fluid vesicles

    Full text link
    An exact description is provided of an almost spherical fluid vesicle with a fixed area and a fixed enclosed volume locally deformed by external normal forces bringing two nearby points on the surface together symmetrically. The conformal invariance of the two-dimensional bending energy is used to identify the distribution of energy as well as the stress established in the vesicle. While these states are local minima of the energy, this energy is degenerate; there is a zero mode in the energy fluctuation spectrum, associated with area and volume preserving conformal transformations, which breaks the symmetry between the two points. The volume constraint fixes the distance SS, measured along the surface, between the two points; if it is relaxed, a second zero mode appears, reflecting the independence of the energy on SS; in the absence of this constraint a pathway opens for the membrane to slip out of the defect. Logarithmic curvature singularities in the surface geometry at the points of contact signal the presence of external forces. The magnitude of these forces varies inversely with SS and so diverges as the points merge; the corresponding torques vanish in these defects. The geometry behaves near each of the singularities as a biharmonic monopole, in the region between them as a surface of constant mean curvature, and in distant regions as a biharmonic quadrupole. Comparison of the distribution of stress with the quadratic approximation in the height functions points to shortcomings of the latter representation. Radial tension is accompanied by lateral compression, both near the singularities and far away, with a crossover from tension to compression occurring in the region between them.Comment: 26 pages, 10 figure

    Spinor representation of surfaces and complex stresses on membranes and interfaces

    Full text link
    Variational principles are developed within the framework of a spinor representation of the surface geometry to examine the equilibrium properties of a membrane or interface. This is a far-reaching generalization of the Weierstrass-Enneper representation for minimal surfaces, introduced by mathematicians in the nineties, permitting the relaxation of the vanishing mean curvature constraint. In this representation the surface geometry is described by a spinor field, satisfying a two-dimensional Dirac equation, coupled through a potential associated with the mean curvature. As an application, the mesoscopic model for a fluid membrane as a surface described by the Canham-Helfrich energy quadratic in the mean curvature is examined. An explicit construction is provided of the conserved complex-valued stress tensor characterizing this surface.Comment: 17 page

    Deformations of extended objects with edges

    Full text link
    We present a manifestly gauge covariant description of fluctuations of a relativistic extended object described by the Dirac-Nambu-Goto action with Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas physical fluctuations of the bulk lie normal to its worldsheet, those on the edge possess an additional component directed into the bulk. These fluctuations couple in a non-trivial way involving the underlying geometrical structures associated with the worldsheet of the object and of its edge. We illustrate the formalism using as an example a string with massive point particles attached to its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5

    Geometric Bounds in Spherically Symmetric General Relativity

    Get PDF
    We exploit an arbitrary extrinsic time foliation of spacetime to solve the constraints in spherically symmetric general relativity. Among such foliations there is a one parameter family, linear and homogeneous in the extrinsic curvature, which permit the momentum constraint to be solved exactly. This family includes, as special cases, the extrinsic time gauges that have been exploited in the past. These foliations have the property that the extrinsic curvature is spacelike with respect to the the spherically symmetric superspace metric. What is remarkable is that the linearity can be relaxed at no essential extra cost which permits us to isolate a large non - pathological dense subset of all extrinsic time foliations. We identify properties of solutions which are independent of the particular foliation within this subset. When the geometry is regular, we can place spatially invariant numerical bounds on the values of both the spatial and the temporal gradients of the scalar areal radius, RR. These bounds are entirely independent of the particular gauge and of the magnitude of the sources. When singularities occur, we demonstrate that the geometry behaves in a universal way in the neighborhood of the singularity.Comment: 16 pages, revtex, submitted to Phys. Rev.

    Conical defects in growing sheets

    Full text link
    A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus angle sese at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if se<=0se <= 0, the disc can fold into one of a discrete infinite number of states if sese is positive. We construct these states in the regime where bending dominates, determine their energies and how stress is distributed in them. For each state a critical value of sese is identified beyond which the cone touches itself. Before this occurs, all states are stable; the ground state has two-fold symmetry.Comment: 4 pages, 4 figures, LaTeX, RevTeX style. New version corresponds to the one published in PR

    The isolation of gravitational instantons: Flat tori V flat R^4

    Full text link
    The role of topology in the perturbative solution of the Euclidean Einstein equations about flat instantons is examined.Comment: 15 pages, ICN-UNAM 94-1

    Modelling the dynamics of global monopoles

    Get PDF
    A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is modelled by de Sitter space; its boundary by a thin wall with a constant energy density; its exterior by the asymptotic Schwarzschild solution with negative gravitational mass MM and solid angle deficit, ΔΩ/4π=8πGη2\Delta\Omega/4\pi = 8\pi G\eta^2, where η\eta is the symmetry breaking scale. The deficit angle equals 4π4\pi when η=1/8πGMp\eta=1/\sqrt{8\pi G} \equiv M_p. We find that: (1) if η<Mp\eta <M_p, there exists a unique globally static non-singular solution with a well defined mass, M0<0M_0<0. M0M_0 provides a lower bound on MM. If M0<M<0M_0<M<0, the solution oscillates. There are no inflating solutions in this symmetry breaking regime. (2) if ηMp\eta \ge M_p, non-singular solutions with an inflating core and an asymptotically cosmological exterior will exist for all M<0M<0. (3) if η\eta is not too large, there exists a finite range of values of MM where a non-inflating monopole will also exist. These solutions appear to be metastable towards inflation. If MM is positive all solutions are singular. We provide a detailed description of the configuration space of the model for each point in the space of parameters, (η,M)(\eta, M) and trace the wall trajectories on both the interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical Review D. Abstract's correcte

    Covariant perturbations of domain walls in curved spacetime

    Get PDF
    A manifestly covariant equation is derived to describe the perturbations in a domain wall on a given background spacetime. This generalizes recent work on domain walls in Minkowski space and introduces a framework for examining the stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0
    corecore