11,525 research outputs found
Whirling skirts and rotating cones
Steady, dihedrally symmetric patterns with sharp peaks may be observed on a
spinning skirt, lagging behind the material flow of the fabric. These
qualitative features are captured with a minimal model of traveling waves on an
inextensible, flexible, generalized-conical sheet rotating about a fixed axis.
Conservation laws are used to reduce the dynamics to a quadrature describing a
particle in a three-parameter family of potentials. One parameter is associated
with the stress in the sheet, aNoether is the current associated with
rotational invariance, and the third is a Rossby number which indicates the
relative strength of Coriolis forces. Solutions are quantized by enforcing a
topology appropriate to a skirt and a particular choice of dihedral symmetry. A
perturbative analysis of nearly axisymmetric cones shows that Coriolis effects
are essential in establishing skirt-like solutions. Fully non-linear solutions
with three-fold symmetry are presented which bear a suggestive resemblance to
the observed patterns.Comment: two additional figures, changes to text throughout. journal version
will have a wordier abstrac
Dipoles in thin sheets
A flat elastic sheet may contain pointlike conical singularities that carry a
metrical "charge" of Gaussian curvature. Adding such elementary defects to a
sheet allows one to make many shapes, in a manner broadly analogous to the
familiar multipole construction in electrostatics. However, here the underlying
field theory is non-linear, and superposition of intrinsic defects is
non-trivial as it must respect the immersion of the resulting surface in three
dimensions. We consider a "charge-neutral" dipole composed of two conical
singularities of opposite sign. Unlike the relatively simple electrostatic
case, here there are two distinct stable minima and an infinity of unstable
equilibria. We determine the shapes of the minima and evaluate their energies
in the thin-sheet regime where bending dominates over stretching. Our
predictions are in surprisingly good agreement with experiments on paper
sheets.Comment: 20 pages, 5 figures, 2 table
Force dipoles and stable local defects on fluid vesicles
An exact description is provided of an almost spherical fluid vesicle with a
fixed area and a fixed enclosed volume locally deformed by external normal
forces bringing two nearby points on the surface together symmetrically. The
conformal invariance of the two-dimensional bending energy is used to identify
the distribution of energy as well as the stress established in the vesicle.
While these states are local minima of the energy, this energy is degenerate;
there is a zero mode in the energy fluctuation spectrum, associated with area
and volume preserving conformal transformations, which breaks the symmetry
between the two points. The volume constraint fixes the distance , measured
along the surface, between the two points; if it is relaxed, a second zero mode
appears, reflecting the independence of the energy on ; in the absence of
this constraint a pathway opens for the membrane to slip out of the defect.
Logarithmic curvature singularities in the surface geometry at the points of
contact signal the presence of external forces. The magnitude of these forces
varies inversely with and so diverges as the points merge; the
corresponding torques vanish in these defects. The geometry behaves near each
of the singularities as a biharmonic monopole, in the region between them as a
surface of constant mean curvature, and in distant regions as a biharmonic
quadrupole. Comparison of the distribution of stress with the quadratic
approximation in the height functions points to shortcomings of the latter
representation. Radial tension is accompanied by lateral compression, both near
the singularities and far away, with a crossover from tension to compression
occurring in the region between them.Comment: 26 pages, 10 figure
Spinor representation of surfaces and complex stresses on membranes and interfaces
Variational principles are developed within the framework of a spinor
representation of the surface geometry to examine the equilibrium properties of
a membrane or interface. This is a far-reaching generalization of the
Weierstrass-Enneper representation for minimal surfaces, introduced by
mathematicians in the nineties, permitting the relaxation of the vanishing mean
curvature constraint. In this representation the surface geometry is described
by a spinor field, satisfying a two-dimensional Dirac equation, coupled through
a potential associated with the mean curvature. As an application, the
mesoscopic model for a fluid membrane as a surface described by the
Canham-Helfrich energy quadratic in the mean curvature is examined. An explicit
construction is provided of the conserved complex-valued stress tensor
characterizing this surface.Comment: 17 page
Deformations of extended objects with edges
We present a manifestly gauge covariant description of fluctuations of a
relativistic extended object described by the Dirac-Nambu-Goto action with
Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas
physical fluctuations of the bulk lie normal to its worldsheet, those on the
edge possess an additional component directed into the bulk. These fluctuations
couple in a non-trivial way involving the underlying geometrical structures
associated with the worldsheet of the object and of its edge. We illustrate the
formalism using as an example a string with massive point particles attached to
its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5
Geometric Bounds in Spherically Symmetric General Relativity
We exploit an arbitrary extrinsic time foliation of spacetime to solve the
constraints in spherically symmetric general relativity. Among such foliations
there is a one parameter family, linear and homogeneous in the extrinsic
curvature, which permit the momentum constraint to be solved exactly. This
family includes, as special cases, the extrinsic time gauges that have been
exploited in the past. These foliations have the property that the extrinsic
curvature is spacelike with respect to the the spherically symmetric superspace
metric. What is remarkable is that the linearity can be relaxed at no essential
extra cost which permits us to isolate a large non - pathological dense subset
of all extrinsic time foliations. We identify properties of solutions which are
independent of the particular foliation within this subset. When the geometry
is regular, we can place spatially invariant numerical bounds on the values of
both the spatial and the temporal gradients of the scalar areal radius, .
These bounds are entirely independent of the particular gauge and of the
magnitude of the sources. When singularities occur, we demonstrate that the
geometry behaves in a universal way in the neighborhood of the singularity.Comment: 16 pages, revtex, submitted to Phys. Rev.
Conical defects in growing sheets
A growing or shrinking disc will adopt a conical shape, its intrinsic
geometry characterized by a surplus angle at the apex. If growth is slow,
the cone will find its equilibrium. Whereas this is trivial if , the
disc can fold into one of a discrete infinite number of states if is
positive. We construct these states in the regime where bending dominates,
determine their energies and how stress is distributed in them. For each state
a critical value of is identified beyond which the cone touches itself.
Before this occurs, all states are stable; the ground state has two-fold
symmetry.Comment: 4 pages, 4 figures, LaTeX, RevTeX style. New version corresponds to
the one published in PR
The isolation of gravitational instantons: Flat tori V flat R^4
The role of topology in the perturbative solution of the Euclidean Einstein
equations about flat instantons is examined.Comment: 15 pages, ICN-UNAM 94-1
Modelling the dynamics of global monopoles
A thin wall approximation is exploited to describe a global monopole coupled
to gravity. The core is modelled by de Sitter space; its boundary by a thin
wall with a constant energy density; its exterior by the asymptotic
Schwarzschild solution with negative gravitational mass and solid angle
deficit, , where is the symmetry
breaking scale. The deficit angle equals when . We find that: (1) if , there exists a unique globally
static non-singular solution with a well defined mass, . provides
a lower bound on . If , the solution oscillates. There are no
inflating solutions in this symmetry breaking regime. (2) if ,
non-singular solutions with an inflating core and an asymptotically
cosmological exterior will exist for all . (3) if is not too large,
there exists a finite range of values of where a non-inflating monopole
will also exist. These solutions appear to be metastable towards inflation. If
is positive all solutions are singular. We provide a detailed description
of the configuration space of the model for each point in the space of
parameters, and trace the wall trajectories on both the interior
and the exterior spacetimes. Our results support the proposal that topological
defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical
Review D. Abstract's correcte
Covariant perturbations of domain walls in curved spacetime
A manifestly covariant equation is derived to describe the perturbations in a
domain wall on a given background spacetime. This generalizes recent work on
domain walls in Minkowski space and introduces a framework for examining the
stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0
- …
