37 research outputs found

    Trypanosoma cruzi Produces the Specialized Proresolving Mediators Resolvin D1, Resolvin D5, and Resolvin E2.

    Get PDF
    Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD). CD is a persistent, lifelong infection affecting many organs, most notably the heart, where it may result in acute myocarditis and chronic cardiomyopathy. The pathological features include myocardial inflammation and fibrosis. In the Brazil strain-infected CD-1 mouse, which recapitulates many of the features of human infection, we found increased plasma levels of resolvin D1 (RvD1), a specialized proresolving mediator of inflammation, during both the acute and chronic phases of infection (>100 days postinfection) as determined by enzyme-linked immunosorbent assay (ELISA). Additionally, ELISA on lysates of trypomastigotes of both strains Tulahuen and Brazil revealed elevated levels of RvD1 compared with lysates of cultured epimastigotes of T. cruzi, tachyzoites of Toxoplasma gondii, trypomastigotes of Trypanosoma brucei, cultured L6E9 myoblasts, and culture medium containing no cells. Lysates of T. cruzi-infected myoblasts also displayed increased levels of RvD1. Lipid mediator metabolomics confirmed that the trypomastigotes of T. cruzi produced RvD1, RvD5, and RvE2, which have been demonstrated to modulate the host response to bacterial infections. Plasma RvD1 levels may be both host and parasite derived. Since T. cruzi synthesizes specialized proresolving mediators of inflammation, as well as proinflammatory eicosanoids, such as thromboxane A2, one may speculate that by using these lipid mediators to modulate its microenvironment, the parasite is able to survive.This work was supported by NIH Grants PO1 GM095467(CNS) and AI-214000 (HBT

    Aspirin Treatment of Mice Infected with Trypanosoma cruzi and Implications for the Pathogenesis of Chagas Disease

    Get PDF
    Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection

    Sodium MRI revisited

    No full text

    Lack of association between adiponectin levels and atherosclerosis in mice

    No full text
    Objective: Adiponectin is an adipocyte-derived, secreted protein that is implicated in protection against a cluster of related metabolic disorders. Mice lacking adiponectin display impaired hepatic insulin sensitivity and respond only partially to peroxisome proliferator-activated receptor γ agonists. Adiponectin has been associated with antiinflammatory and antiatherogenic properties; however, the direct involvement of adiponectin on the atherogenic process has not been studied. Methods and results: We crossed adiponectin knockout mice (Adn) or mice with chronically elevated adiponectin levels (Adn) into the low-density lipoprotein receptor-null (Ldlr) and the apoliprotein E-null (Apoe) mouse models. Adiponectin levels did not correlate with a suppression of the atherogenic process. Plaque volume in the aortic root, cholesterol accumulation in the aorta, and plaque morphology under various dietary conditions were not affected by circulating adiponectin levels. In light of the strong associations reported for adiponectin with cardiovascular disease in humans, the lack of a phenotype in gain-and loss-of-function studies in mice suggests a lack of causation for adiponectin in inhibiting the buildup of atherosclerotic lesions. Conclusion: These data indicate that the actions of adiponectin on the cardiovascular system are complex and multifaceted, with a minimal direct impact on atherosclerotic plaque formation in preclinical rodent models. © 2010 American Heart Association, Inc.link_to_subscribed_fulltex
    corecore