12 research outputs found

    Differential ACE expression among tissues in allele-specific Wistar rat lines

    No full text
    In humans, the insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene accounts for half of the variance in plasma ACE activity. The deletion allele is associated with high plasma ACE activity, cardiovascular disease, and renal disease. In rat, a similar association is found between the B and L alleles of a microsatellite marker in the ACE gene. We identified the B/L variation in the Wistar outbred rat and bred two lines homozygous for the two alleles (WU-B and WU-L). ACE activity was measured in serum, heart, kidney, and aorta homogenates. Immunohistochemistry and ACE mRNA expression were performed in heart, kidney, and aortic tissue. Aortic rings were collected and stimulated with AngI, AngII, and AngI with Lisinopril to measure ACE functional activity by vasoconstrictor response. Serum, heart, and kidney ACE activity and kidney mRNA expression were two-fold higher in WU-B. Kidney staining showed a clear difference in tubular ACE expression, with more staining in WU-B. While in aorta ACE activity and mRNA expression was twofold higher in WU-L, functional conversion of AngI was higher in WU-B, indicating either a functional difference in AngI to AngII conversion between the two alleles due to different splicing or the presence of other factors involved in the conversion that are differentially expressed as the result of differences in the ACE alleles. The newly developed WU-B and WU-L lines show tissue-specific differences in ACE expression and activity. This provides an experimental tool to study the pathophysiologic consequences of differences in ACE alleles in renal and cardiovascular disease

    Rat Ace allele variation determines susceptibility to AngII-induced renal damage

    No full text
    Introduction: Ace b/l polymorphism in rats is associated with differential tissue angiotensin-converting enzyme (ACE) expression and activity, and susceptibility to renal damage. Same polymorphism was recently found in outbred Wistar rat strain with b allele accounting for higher renal ACE, and provided a model for studying renin-angiotensin-aldosterone system (RAAS) response behind the innate high or low ACE conditions. Methods: We investigated the reaction of these alleles on chronic angiotensin II (AngII) infusion. Wistar rats were selected to breed male homozygotes for the b (WU-B) or l allele (WU-L) (n = 12). For each allele, one group (n = 6) received AngII infusion via an osmotic minipump (435 ng/kg/min) for 3 weeks. The other group (n = 6) served as a control. Results: WU-B had higher ACE activity at baseline then WU-L. Interestingly, baseline renal ACE2 expression and activity were higher in WU-L. AngII infusion induced the same increase in blood pressure in both genotypes, no proteinuria, but caused tubulo-interstitial renal damage with increased alpha-SMA and monocyte/macrophage influx only in WU-B (p <0.05). Low ACE WU-L rats did not develop renal damage. Conclusion: AngII infusion causes proteinuria-independent renal damage only in rats with genetically predetermined high ACE while rats with low ACE seemed to be protected against the detrimental effect of AngII. Differences in renal ACE2, mirroring those in ACE, might be involved

    Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist

    No full text
    Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome. Angiotensin-converting enzyme (ACE) and its effector peptide angiotensin (Ang) II have been implicated in the pathogenesis of ARDS. A counter-regulatory enzyme of ACE, ie ACE2 that degrades Ang II to Ang-(1-7), offers a promising novel treatment modality for this syndrome. As the involvement of ACE and ACE2 in ARDS is still unclear, this study investigated the role of these two enzymes in an animal model of ARDS. ARDS was induced in rats by intratracheal administration of LPS followed by mechanical ventilation. During ventilation, animals were treated with saline (placebo), losartan (Ang II receptor antagonist), or with a protease-resistant, cyclic form of Ang-(1-7) [cAng-(1-7)]. In bronchoalveolar lavage fluid (BALF) of ventilated LPS-exposed animals, ACE activity was enhanced, whereas ACE2 activity was reduced. This was matched by enhanced BALF levels of Ang II and reduced levels of Ang-(1-7). Therapeutic intervention with cAng-(1-7) attenuated the inflammatory mediator response, markedly decreased lung injury scores, and improved lung function, as evidenced by increased oxygenation. These data indicate that ARDS develops, in part, due to reduced pulmonary levels of Ang-(1-7) and that repletion of this peptide halts the development of ARDS. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Imbalance Between Pulmonary Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Activity in Acute Respiratory Distress Syndrome

    No full text
    <p>Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin II into angiotensin-(1-7). The aim of this study was to determine pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in patients with acute respiratory distress syndrome.</p><p>Design: Prospective observational pilot study.</p><p>Setting: A PICU of a university hospital.</p><p>Patients: Fourteen patients admitted, requiring mechanical ventilation for respiratory syncytial virus lower respiratory tract infection.</p><p>Interventions: None.</p><p>Measurements and Main Results: Two groups of patients were distinguished at admission: a group fulfilling the criteria for acute respiratory distress syndrome and a non-acute respiratory distress syndrome group. Angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity were measured in bronchoalveolar lavage fluid. Patients with acute respiratory distress syndrome had increased angiotensin-converting enzyme activity and decreased angiotensin-converting enzyme 2 activity (p <0.001) compared with the control group.</p><p>Conclusion: It is shown for the first time that in acute respiratory distress syndrome, enhanced angiotensin-converting enzyme activity is paralleled by a reduced angiotensin-converting enzyme 2 activity, similar to that found in an experimental rat model of acute respiratory distress syndrome. The reduced angiotensin-converting enzyme 2 activity may be counteracted by restoring angiotensin-(1-7) level, thereby offering a novel treatment modality for this syndrome.</p>

    Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk

    No full text
    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile e acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis
    corecore