93 research outputs found

    Compression behavior of graphite-thermoplastic and graphite-epoxy panels with circular holes or impact damage

    Get PDF
    An experimental investigation of the compression behavior of laminated specimens made from graphite-epoxy tape, graphite-thermoplastic tape and graphite-thermoplastic fabric was conducted. Specimens with five different stacking sequences were loaded to failure in uniaxial compression. Some of the specimens had central circular holes with diameters up to 65 percent of the specimen width. Other specimens were subjected to low speed impact with impact energies up to 35 J prior to compressive loading. This investigation indicates that graphite-thermoplastic specimens with holes have up to 15 percent lower failure stresses and strains than graphite-epoxy specimens with the same stacking sequence and hole size. However, graphite-thermoplastic specimens subjected to low speed impact have up to 15 percent higher failure stresses and strains than graphite-epoxy specimens with the same stacking sequence and impact energy. Compression tests of graphite-thermoplastic specimens constructed of unidirectional tape and fabric indicate that the material form has little effect on failure strains in specimens with holes or low speed impact damage

    Effect of low-speed impact damage and damage location on behavior of composite panels

    Get PDF
    The effect of low speed impact damage on the compression and tension strength of thin and moderately thick composite specimens was investigated. Impact speed ranged from 50 to 550 ft./sec., with corresponding impact energies from 0.25 to 30.7 ft. x lb. Impact locations were near the center of the specimen or near a lateral unloaded edge. In this study, thin specimens with only 90 degree and + or - 45 degree plies that were impacted away from the unloaded edge suffered less reduction in load carrying capability because of impact damage than of the same specimens impacted near the unloaded edge. Failure loads of thicker compression loaded specimens with a similar stacking sequence were independent of impact location. Failure loads of thin tension loaded specimens with 0 degree plies was independent of impact location, whereas failure loads of thicker compression loaded specimens with 0 degree plies were dependent upon impact location. A finite element analysis indicated that high axial strains occurred near the unloaded edges of the postbuckled panels. Thus, impacts near the unloaded edge would significantly affect the behavior of the postbuckled panel

    An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Get PDF
    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies

    Structural Efficiency and Behavior of Pristine and Notched Stitched Structure

    Get PDF
    Two driving factors in aircraft panel design are structural efficiency and response to in-service damage. Stitching through the thickness can improve both of these considerations. Combining stitching with a post-buckling design approach can provide additional improvements. The buckling behavior of stitched structure is considered since lighter structures can be achieved if local skin buckling is allowed to occur at less than design ultimate load. Through-the-thickness stitching can suppress delamination between skin and flange, thereby allowing the structure to reliably carry load into the postbuckling range. Hat-stiffened and rod-stiffened panels in which the skin and flanges were stitched together through-the-thickness prior to curing are considered through experiment and analysis. In both types of panels no mechanical fasteners were used for the assembly. Specimens were loaded to failure in axial compression. In this study all specimens buckled in the skin between the stiffeners and continued to carry load. In addition, the behavior of panels with a severed stringer or notch are considered. Failure loads and strain distributions in the notched panel are compared to those in the unnotched panel

    The Influence of Restraint Systems on Panel Behavior

    Get PDF
    When a panel is tested in uniaxial compression in a test machine, the boundary conditions are not quite the same as they would be if it were part of a complete structure. A restraint system may be used to simulate conditions found in a complete vehicle. Quantifying the quality of the restraint with only point-measurement devices can leave an inadequate characterization of the out-of-plane behavior. However, today s full-field displacement monitoring techniques allow for much more accurate views of the global panel deformation and strain, and therefore allow for a better understanding of panel behavior. In the current study, the behavior of a hat-stiffened and two rod-stiffened carbon-epoxy panels is considered. Panels were approximately 2 meters tall and 0.76 to 1.06 m wide. Unloaded edges were supported by knife edges and stiffeners were attached to a support structure at selected locations to restrain out-of-plane motion. A comparison is made between test results based on full-field measurements and analyses based on assumptions of boundary conditions of a completely rigid edge restraint and the absence of any edge restraint. Results indicate that motion at the restrained edges must be considered to obtain accurate test-analysis correlation

    Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    Get PDF
    The results of this experimental comparison of filament wound control (unimpacted) cylinders loaded to failure in axial compression indicates that one fiber cross-over location has no effect on the failure mode or strain in thick walled filament wound graphite-epoxy specimens with stacking sequence (plus or minus 45/90) sub 3s. A comparison between filament wound and hand laid-up tape control cylinders indicates that there is little or no difference in the response of cylinders constructed by using two different fabrication methods, however, unimpacted panels with many fiber cross-overs fail at up to 15 percent lower strains than panels with no fiber cross-overs. A comparison of samples subjected to low speed impact damage prior to compressive loading indicates that impact damage reduces the strain at failure by over 60 percent in tape and filament wound graphite-epoxy cylinders and in tape flat panels. The presence of fiber cross-overs was observed to reduce the strength of filament wound impact-damaged panels, but to have no significant effect on the strength of filament wound impact-damaged cylinders

    Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    Get PDF
    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included

    Behavior of Frame-Stiffened Composite Panels with Damage

    Get PDF
    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described

    Failure at Frame-Stringer Intersections in PRSEUS Panels

    Get PDF
    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This study focuses on the intersection between the rod-stiffener and the foam-filled frame in a PRSEUS specimen. Compression loading is considered, which induces stress concentrations at the intersection point that can lead to failures. An experiment with accompanying analysis for a single-frame specimen is described, followed by a parametric study of simple reinforcements to reduce strains in the intersection region

    Applying a Stitched, Rod-Stiffened Concept to Heavily Loaded Structure

    Get PDF
    NASA and the Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A stitched carbon-epoxy material system was developed to reduce the weight and cost of transport aircraft wing structure, first in the NASA Advanced Composites Technology (ACT) program in the 1990's and now in the Environmentally Responsible Aviation (ERA) Project. By stitching through the thickness of a dry carbon fiber material prior to cure, the labor associated with panel fabrication and assembly can be significantly reduced and the need for mechanical fasteners is almost eliminated. Stitching provides the benefit of reducing or eliminating delaminations, including those between stiffener flanges and skin. Stitching also reduces part count, and therefore, cost of the structure. The stitched panel concept used in the ACT program in the 1990's used simple blade-stiffeners as stringers, caps and clips. Today, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed for application to advanced vehicle configurations. PRSEUS provides additional weight savings through the use of a stiffener with a thin web and a unidirectional carbon rod at the top of the web which provides structurally efficient stiffening. A comparison between the blade-stiffened structure and PRSEUS is presented focusing on highly loaded structure and demonstrating improved weight reduction
    corecore