180 research outputs found

    Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.

    Get PDF
    ATP is essential for cellular function and is usually produced through oxidative phosphorylation. However, mitochondrial dysfunction is now being recognized as an important contributing factor in the development cardiovascular diseases, such as pulmonary hypertension (PH). In PH there is a metabolic change from oxidative phosphorylation to mainly glycolysis for energy production. However, the mechanisms underlying this glycolytic switch are only poorly understood. In particular the role of the respiratory Complexes in the mitochondrial dysfunction associated with PH is unresolved and was the focus of our investigations. We report that smooth muscle cells isolated from the pulmonary vessels of rats with PH (PH-PASMC), induced by a single injection of monocrotaline, have attenuated mitochondrial function and enhanced glycolysis. Further, utilizing a novel live cell assay, we were able to demonstrate that the mitochondrial dysfunction in PH-PASMC correlates with deficiencies in the activities of Complexes I-III. Further, we observed that there was an increase in mitochondrial reactive oxygen species generation and mitochondrial membrane potential in the PASMC isolated from rats with PH. We further found that the defect in Complex I activity was due to a loss of Complex I assembly, although the assembly of Complexes II and III were both maintained. Thus, we conclude that loss of Complex I assembly may be involved in the switch of energy metabolism in smooth muscle cells to glycolysis and that maintaining Complex I activity may be a potential therapeutic target for the treatment of PH

    Endostatin, an inhibitor of angiogenesis, decreases after bidirectional superior cavopulmonary anastamosis.

    Get PDF
    Pulmonary arteriovenous malformations (PAVMs) are a common source of morbidity after bidirectional superior cavopulmonary anastomosis (Glenn). The diversion of hepatic venous effluent away from the pulmonary circulation after Glenn appears to play a significant role in the pathogenesis of PAVMs. Although the liver is known to produce factors that regulate vascular development, specific hepatic inhibitors of angiogenesis have not been described in the post-Glenn population. Endostatin, produced from its precursor collagen XVIII, is a potent inhibitor of angiogenesis produced by the liver. This study aimed to investigate the hypothesis that endostatin levels decrease in patients after Glenn. Levels of endostatin and its precursor, long-type collagen XVIII, were determined by enzyme-linked immunoassay and immunoprecipitation, respectively, for serum samples from 38 patients undergoing Glenn, total cavopulmonary anastomosis (Fontan), or biventricular repair of cardiac defects. Samples were obtained before surgery and 24 h afterward. In patients undergoing a bidirectional Glenn procedure, endostatin levels decreased after surgery (n = 17; 4.42 vs 3.34 ng/ml; p < 0.001), and long type-collagen XVIII levels increased by 200 % (n = 10; p = 0.0001). However, endostatin levels did not change after surgery in patients undergoing Fontan (n = 13) or biventricular repair (n = 8). In patients undergoing Fontan, long-type collagen XVIII increased by 18 % (p < 0.01), whereas in control subjects, the levels were unchanged. These data suggest that the diversion of hepatic blood flow away from the pulmonary circulation in patients after the Glenn procedure inhibits endostatin production from collagen XVIII, resulting in decreased circulating serum endostatin levels. A decrease in endostatin may promote angiogenesis. The mechanism whereby the pulmonary circulation processes endostatin and its potential role in the pathogenesis of PAVMs warrant further study

    Hemodynamic Effects of Epinephrine, Bicarbonate and Calcium in the Early Postnatal Period in a Lamb Model of Single-Ventricle Physiology Created In Utero

    Get PDF
    ObjectivesA reproducible fetal animal model of single-ventricle physiology was created to examine the effects of pharmacologic agents commonly used in the perinatal and perioperative intensive care management of patients with a single ventricle.BackgroundSingle-ventricle physiology is characterized by parallel pulmonary and systemic circulations, with effective blood flow to each determined by the relative resistances in the pulmonary and systemic vascular beds. Perinatal and perioperative management of these patients is largely based on empiric observations and differs considerably between institutions and is further complicated by the transitional physiology of the newborn. The lack of animal models of single-ventricle physiology has hindered the understanding of this problem.MethodsA 10-mm, Damus-Kaye-Stansel-type aortopulmonary anastomosis was created in 10 fetal sheep at 140±1.2 days of gestation. The main pulmonary artery was ligated distally, and pulmonary blood flow (Qp) was provided through a 5-mm aortopulmonary shunt. Eight lambs were delivered at term and placed on cardiopulmonary bypass (30 min) 48 to 72h after birth. Pharmacologic interventions (0.1Mg/kg body weight per min of epinephrine, 2mEq/kg of sodium bicarbonate and 10mg/kg of calcium chloride) were performed before and after bypass, and hemodynamic responses were observed. The response to the epinephrine bolus was determined only in the postbypass study.ResultsBoth before and after bypass, epinephrine infusion and calcium and bicarbonate administration increased Qp and systemic blood flow (Qs) (total cardiac output) but produced only small changes in the Qp/Qs ratio (-0.5% to -7.3% change). With the epinephrine bolus, Qp increased enormously, and the Qp/Qs ratio increased by 584% (p < 0.001).ConclusionsIn neonatal lambs with single-ventricle physiology created in utero, epinephrine infusion and calcium and bicarbonate administration increased total cardiac output without significantly compromising the Qp/Qs ratio. However, epinephrine bolus seems to be hemodynamically detrimental in circumstances of single-ventricle physiology and should be used with caution and probably in relatively lower doses in the resuscitation of patients with single-ventricle physiology. Further investigation of the dose-dependent effects and the effects of prolonged administration of common pharmacologic agents will enable better management of patients with single-ventricle physiology

    Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.

    Get PDF
    There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH

    Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury

    Get PDF
    Patients with critical illness such as acute lung injury often undergo mechanical ventilation in the intensive care unit. Though lifesaving in many instances, mechanical ventilation often results in ventilator induced lung injury (VILI), characterized by overdistension of lung tissue leading to release of edemagenic agents, which further damage the lung and contribute to the mortality and progression of pulmonary inflammation. The endothelium is particularly sensitive, as VILI associated mechanical stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs) which participate in mechanosensing, structure, and signaling. Here, we present the known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in the sensing and response to cyclic stretch and VILI associated stress. Attention is given to how stretch is propagated from the extracellular matrix through integrins to talin and other FA proteins, as well as signaling cascades that include FA proteins, leading to stress fiber formation and other cellular responses. This unifying picture of FAs aids our understanding in an effort to prevent and treat VILI

    Pulmonary hypertension in the intensive care unit after pediatric allogeneic hematopoietic stem cell transplant: incidence, risk factors, and outcomes

    Get PDF
    ObjectiveTo determine the incidence, risk factors, and outcomes of pulmonary hypertension (PH) in the pediatric intensive care unit (PICU) after pediatric hematopoietic stem cell transplant (HCT).MethodsThis was a retrospective study of pediatric patients who underwent allogeneic HCT between January 2008-December 2014 at a center contributing to the Center for International Blood and Marrow Transplant Research data registry. Incidence of PH was assessed from PICU diagnostic codes from records merged from the Virtual Pediatric Systems database. Regression and survival analyses identified factors associated with post-HCT PH. Additional post-HCT morbidities and survival after PH were also assessed.ResultsAmong 6,995 HCT recipients, there were 29 cases of PH, a cumulative incidence of 0.42% (95% CI 0.27%-0.57%) at 60 months post-HCT. In the sub-cohort of 1,067 patients requiring intensive care after HCT, this accounted for a PH prevalence of 2.72% (95% CI 1.74–3.69%). There was an increased risk of developing PH associated with Black/African American race, metabolic disorders, partially HLA-matched or cord blood allografts, graft-versus-host prophylaxis regimen, and lower pre-HCT functional status. Patients who developed PH had significant PICU comorbidities including heart failure, pulmonary hemorrhage, respiratory failure, renal failure, and infections. Survival at 6 months after diagnosis of post-HCT PH was 51.7% (95% CI 32.5%-67.9%).ConclusionsPH is a rare but serious complication in the pediatric post-HCT population. A significant burden of additional comorbidities, procedural interventions, and risk of mortality is associated with its development. Close monitoring and prompt intervention for this severe complication are necessary in this vulnerable population
    corecore