239 research outputs found

    Measuring the Electronic Bandgap of Carbon Nanotube Networks in Non-ideal p-n Diodes

    Full text link
    The measurement of the bandgap in quasi-one dimensional materials such as carbon nanotubes is challenging due to its dimensionality. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal p-n diodes. Using these diodes, we measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55nm), (7,5) (0.83nm), and (6,5) (0.76nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs

    Elucidating the electronic properties of single-wall carbon nanohorns

    Get PDF
    Single-walled carbon nanohorns are an allotrope of carbon with promising properties for a variety of applications. Despite their promise, the majority carrier type (i.e. electrons or holes) that defines the electronic properties of this novel semiconductor is poorly understood and so far only indirect measurements have been employed to arrive at contradictory results. Here, we directly determine the majority carrier type in single-wall carbon nanohorns for the first time by means of thermopower measurements. Using this direct method, we show that SWCNH films exhibit a positive Seebeck coefficient indicating that SWCNHs behave as p-type semiconductors. This result is further corroborated by intentionally tuning the hole or electron concentrations of SWCNH layers via redox doping with molecular electron acceptors and donors, respectively. These results provide a framework for both measuring and chemically tuning the majority carrier type in this emerging nanocarbon semiconductor

    Association of CREBRF variants with obesity and diabetes in Pacific Islanders from Guam and Saipan

    Get PDF
    Aims hypothesis Variants in CREBRF (rs12513649 and rs373863828) have been strongly associated with increased BMI and decreased risk of type 2 diabetes in Polynesian populations; the A allele at rs373863828 is common in Polynesians but rare in most other global populations. The aim of the present study was to assess the association of CREBRF variants with obesity and diabetes in Pacific Islander (largely Marianas and Micronesian) populations from Guam and Saipan. Methods CREBRF rs12513649 and rs373863828 were genotyped in 2022 participants in a community-based cross-sectional study designed to identify determinants of diabetes and end-stage renal disease (ESRD). Associations were analysed with adjustment for age, sex, ESRD and the first four genetic principal components from a genome-wide association study (to account for population stratification); a genomic control procedure was used to account for residual stratification. Results The G allele at rs12513649 had an overall frequency of 7.7%, which varied from 2.2% to 20.7% across different Marianas and Micronesian populations; overall frequency of the A allele at rs373863828 was 4.2% (range: 1.1–5.4%). The G allele at rs12513649 was associated with higher BMI (β=1.55 kg/m2 per copy; p=0.0026) as was the A allele at rs373863828 (β=1.48 kg/m2, p=0.033). The same alleles were associated with lower risk of diabetes (OR per copy: 0.63 [p=0.0063] and 0.49 [p=0.0022], respectively). Meta-analyses combining the current results with previous results in Polynesians showed a strong association between the A allele at rs373863828 and BMI (β=1.38 kg/m2;p=2.5×l0−29) and diabetes (OR=0.65, p=1.5×l0−13). Conclusions interpretation These results confirm the associations of CREBRF variants with higher BMI and lower risk of diabetes and, importantly, they suggest that these variants contribute to the risk of obesity and diabetes in Oceanic populations

    Measurement of the Neutrino Mixing Angle theta(23) in NOvA

    Get PDF
    This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05 x 10(20) protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal theta(23) mixing (theta(23) = pi/4). Assuming the normal mass hierarchy, we find Delta m(32)(2) = (2.67 +/- 0.11) x 10(-3) eV(2) and sin(2) theta(23)at the two statistically degenerate values 0.404(-0.022)(+0.030) and 0.624(-0.030)(+0.022), both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6 sigma significance
    • …
    corecore