23 research outputs found

    Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    Get PDF
    Background: KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods: We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results: KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions: Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    High Resolution Multiplex Confocal Imaging of the Neurovascular Unit in Health and Experimental Ischemic Stroke

    No full text
    The neurovascular unit (NVU) is an anatomical group of cells that establishes the blood&ndash;brain barrier (BBB) and coordinates cerebral blood flow in association with neuronal function. In cerebral gray matter, cellular constituents of the NVU include endothelial cells and associated pericytes, astrocytes, neurons, and microglia. Dysfunction of the NVU is a common feature of diseases that affect the CNS, such as ischemic stroke. High-level evaluation of these NVU changes requires the use of imaging modalities that can enable the visualization of various cell types under disease conditions. In this study, we applied our confocal microscopy strategy using commercially available labeling reagents to, for the first time, simultaneously investigate associations between endothelial cells, the vascular basal lamina, pericytes, microglia, astrocytes and/or astrocyte end-feet, and neurites in both healthy and ischemic brain tissue. This allowed us to demonstrate ischemia-induced astrocyte activation, neurite loss, and microglial migration toward blood vessels in a single confocal image. Furthermore, our labeling cocktail enabled a precise quantification of changes in neurites and astrocyte reactivity, thereby showing the relationship between different NVU cellular constituents in healthy and diseased brain tissue. The application of our imaging approach for the simultaneous visualization of multiple NVU cell types provides an enhanced understanding of NVU function and pathology, a state-of-the-art advancement that will facilitate the development of more effective treatment strategies for diseases of the CNS that exhibit neurovascular dysfunction, such as ischemic stroke

    Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration

    No full text
    One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood&ndash;brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states

    High Resolution Multiplex Confocal Imaging of the Neurovascular Unit in Health and Experimental Ischemic Stroke

    No full text
    The neurovascular unit (NVU) is an anatomical group of cells that establishes the blood–brain barrier (BBB) and coordinates cerebral blood flow in association with neuronal function. In cerebral gray matter, cellular constituents of the NVU include endothelial cells and associated pericytes, astrocytes, neurons, and microglia. Dysfunction of the NVU is a common feature of diseases that affect the CNS, such as ischemic stroke. High-level evaluation of these NVU changes requires the use of imaging modalities that can enable the visualization of various cell types under disease conditions. In this study, we applied our confocal microscopy strategy using commercially available labeling reagents to, for the first time, simultaneously investigate associations between endothelial cells, the vascular basal lamina, pericytes, microglia, astrocytes and/or astrocyte end-feet, and neurites in both healthy and ischemic brain tissue. This allowed us to demonstrate ischemia-induced astrocyte activation, neurite loss, and microglial migration toward blood vessels in a single confocal image. Furthermore, our labeling cocktail enabled a precise quantification of changes in neurites and astrocyte reactivity, thereby showing the relationship between different NVU cellular constituents in healthy and diseased brain tissue. The application of our imaging approach for the simultaneous visualization of multiple NVU cell types provides an enhanced understanding of NVU function and pathology, a state-of-the-art advancement that will facilitate the development of more effective treatment strategies for diseases of the CNS that exhibit neurovascular dysfunction, such as ischemic stroke

    Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia–reoxygenation

    No full text
    The blood–brain barrier (BBB) has a critical role in central nervous system homeostasis. Intercellular tight junction (TJ) protein complexes of the brain microvasculature limit paracellular diffusion of substances from the blood into the brain. Hypoxia and reoxygenation (HR) is a central component to numerous disease states and pathologic conditions. We have previously shown that HR can influence the permeability of the BBB as well as the critical TJ protein occludin. During HR, free radicals are produced, which may lead to oxidative stress. Using the free radical scavenger tempol (200 mg/kg, intraperitoneal), we show that oxidative stress produced during HR (6% O2 for 1 h, followed by room air for 20 min) mediates an increase in BBB permeability in vivo using in situ brain perfusion. We also show that these changes are associated with alterations in the structure and localization of occludin. Our data indicate that oxidative stress is associated with movement of occludin away from the TJ. Furthermore, subcellular fractionation of cerebral microvessels reveals alterations in occludin oligomeric assemblies in TJ associated with plasma membrane lipid rafts. Our data suggest that pharmacological inhibition of disease states with an HR component may help preserve BBB functional integrity

    High-Dose Acetaminophen Alters the Integrity of the Blood&ndash;Brain Barrier and Leads to Increased CNS Uptake of Codeine in Rats

    No full text
    The consumption of acetaminophen (APAP) can induce neurological changes in human subjects; however, effects of APAP on blood&ndash;brain barrier (BBB) integrity are unknown. BBB changes by APAP can have profound consequences for brain delivery of co-administered drugs. To study APAP effects, female Sprague&ndash;Dawley rats (12&ndash;16 weeks old) were administered vehicle (i.e., 100% dimethyl sulfoxide (DMSO), intraperitoneally (i.p.)) or APAP (80 mg/kg or 500 mg/kg in DMSO, i.p.; equivalent to a 900 mg or 5600 mg daily dose for a 70 kg human subject). BBB permeability was measured via in situ brain perfusion using [14C]sucrose and [3H]codeine, an opioid analgesic drug that is co-administered with APAP (i.e., Tylenol #3). Localization and protein expression of tight junction proteins (i.e., claudin-5, occludin, ZO-1) were studied in rat brain microvessels using Western blot analysis and confocal microscopy, respectively. Paracellular [14C]sucrose &ldquo;leak&rdquo; and brain [3H]codeine accumulation were significantly enhanced in rats treated with 500 mg/kg APAP only. Additionally, claudin-5 localization and protein expression were altered in brain microvessels isolated from rats administered 500 mg/kg APAP. Our novel and translational data show that BBB integrity is altered following a single high APAP dose, results that are relevant to patients abusing or misusing APAP and/or APAP/opioid combination products

    Licensing delineates helper and effector NK cell subsets during viral infection

    No full text
    Natural killer (NK) cells can be divided into phenotypic subsets based on expression of receptors that bind self-MHC-I molecules, a concept termed licensing or education. Here we show NK cell subsets with different migratory, effector, and immunoregulatory functions in dendritic cell and antigen (ag)-specific CD8+ T cell responses during influenza and murine cytomegalovirus infections. Shortly after infection, unlicensed NK cells localized in draining lymph nodes and produced GM-CSF, which correlated with the expansion and activation of dendritic cells, and resulted in greater and sustained ag-specific T cell responses. In contrast, licensed NK cells preferentially migrated to infected tissues and produced IFN-γ. Importantly, human NK cell subsets exhibited similar phenotypic characteristics. Collectively, our studies demonstrate a critical demarcation between the functions of licensed and unlicensed NK cell subsets, with the former functioning as the classical effector subset and the latter as the stimulator of adaptive immunity helping to prime immune responses
    corecore