955 research outputs found

    Chronic rejection of mouse kidney allografts

    Get PDF
    Chronic rejection of mouse kidney allografts.BackgroundChronic renal allograft rejection is the leading cause of late graft failure. However, its pathogenesis has not been defined.MethodsTo explore the pathogenesis of chronic rejection, we studied a mouse model of kidney transplantation and examined the effects of altering the expression of donor major histocompatibility complex (MHC) antigens on the development of chronic rejection.ResultsWe found that long-surviving mouse kidney allografts develop pathological abnormalities that resemble chronic rejection in humans. Furthermore, the absence of MHC class I or class II antigens did not prevent the loss of graft function nor alter the pathological characteristics of chronic rejection. Expression of transforming growth factor-β (TGF-β), a pleiotropic cytokine suggested to play a role in chronic rejection, was markedly enhanced in control allografts compared with isografts. However, TGF-β up-regulation was significantly blunted in MHC-deficient grafts. Nonetheless, these differences in TGF-β expression did not affect the character of chronic rejection, including intrarenal accumulation of collagens.ConclusionsReduced expression of either class I or II direct allorecognition pathways is insufficient to prevent the development of chronic rejection, despite a reduction in the levels of TGF-β expressed in the allograft. This suggests that the severity of chronic rejection is independent of the level of MHC disparity between donor and recipient and the level of TGF-β expression within the allograft

    APOL1 risk alleles are associated with exaggerated age-related changes in glomerular number and volume in African-American adults: an autopsy study

    Get PDF
    APOL1 genetic variants contribute to kidney disease in African Americans. We assessed correlations between APOL1 profiles and renal histological features in subjects without renal disease. Glomerular number (N-glom,) and mean glomerular volume (V-glom,) were measured by the dissector/fractionator method in kidneys of African-American and non-African-American adults without renal disease, undergoing autopsies in Jackson, Mississippi. APOL1 risk alleles were genotyped and the kidney findings were evaluated in the context of those profiles. The proportions of African Americans with none, one, and two APOL1 risk alleles were 38%, 43%, and 19%, respectively; 38% of African Americans had G1 allele variants and 31% of African Americans had G2 allele variants. Only APOL1-positive African Americans had significant reductions in N-glom and increases in V-glom with increasing age. Regression analysis predicted an annual average loss of 8834 (P=0.03, sex adjusted) glomeruli per single kidney over the first 38 years of adult life in African Americans with two risk alleles. Body mass index above the group medians, but below the obesity definition of >= 30 kg/m(2), enhanced the expression of age-related changes in N-glom in African Americans with either one or two APOL1 risk alleles. These findings indicate that APOL1 risk alleles are associated with exaggerated age-related nephron loss, probably decaying from a larger pool of smaller glomeruli in early adult life, along with enlargement of the remaining glomeruli. These phenomena might mark mechanisms of accentuated susceptibility to kidney disease in APOL1-positive African Americans

    bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice

    Get PDF
    bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. HIV-associated nephropathy is characterized by extensive tubulointerstitial disease with epithelial cell injury, microcystic proliferation, and tubular regeneration with glomerulosclerosis. To explore the role of bFGF as a mediator of HIV-induced interstitial disease, we utilized an HIV transgenic mouse model that manifests clinical and histological features observed in patients. In transgenic mice, simultaneous renal epithelial cell proliferation and injury were detected in vivo. In areas of microcystic proliferation, immunoreactive bFGF colocalized with extracellular matrix. Kidneys from transgenic mice had increased bFGF low affinity binding sites, particularly in the renal interstitium. In vitro, transgenic renal tubular epithelial cells proliferated more rapidly and generated tubular structures spontaneously, in marked contrast to nontransgenic renal cells where these pathologic features could be mimicked by exogenous bFGF. These studies suggest that renal bFGF and its receptors play an important role in the pathogenesis of HIV-associated nephropathy

    Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE

    Get PDF
    The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse

    A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes

    Renal and Cardiovascular Morbidities Associated with APOL1 Status among African-American and Non-African-American Children with Focal Segmental Glomerulosclerosis

    Get PDF
    Background and objectives: African American (AA) children with focal segmental glomerulosclerosis (FSGS) have later onset disease that progresses more rapidly than in non-AA children. It is unclear how APOL1 genotypes contribute to kidney disease risk, progression and cardiovascular morbidity in children. Design, setting, participants, & measurements: We examined the prevalence of APOL1 genotypes and associated cardiovascular phenotypes among children with FSGS in the Chronic Kidney Disease in Children (CKiD) study; an ongoing multicenter prospective cohort study of children aged 1-16 years with mild to moderate kidney disease.Results: A total of 140 AA children in the CKiD study were genotyped. HR APOL1 genotypes were present in 24% of AA children (33/140) and were associated with FSGS, p 3 mg/L (33% vs. 15%, p=0.12) and obesity (48% vs. 19%, p=0.01). There were no differences in glomerular filtration rate, hemoglobin, iPTH, or calcium-phosphate product. Conclusions: AA children with HR APOL1 genotype and FSGS have increase prevalence of obesity and LVH despite a later age of FSGS onset, while adjusting for socioeconomic status. Treatment of obesity may be an important component of CKD and LVH management in this population

    Impact of APOL1 Genetic Variants on HIV-1 Infection and Disease Progression

    Get PDF
    Apolipoprotein L1 (APOL1) has broad innate immune functions and has been shown to restrict HIV replication in vitro by multiple mechanisms. Coding variants in APOL1 are strongly associated with HIV-associated nephropathy (HIVAN) in persons with untreated HIV infection; however, the mechanism by which APOL1 variant protein potentiates renal injury in the presence of high viral load is not resolved. Little is known about the association of APOL1 genotypes with HIV viral load, HIV acquisition, or progression to AIDS. We assessed the role of APOL1 coding variants on HIV-1 acquisition using the conditional logistic regression test, on viral load using the t-test or ANOVA, and on progression to AIDS using Cox proportional hazards models among African Americans enrolled in the ALIVE HIV natural history cohort (n = 775). APOL1 variants were not associated with susceptibility to HIV-1 acquisition by comparing genotype frequencies between HIV-1 positive and exposed or at-risk HIV-1 uninfected groups (recessive model, 12.8 vs. 12.5%, respectively; OR 1.02, 95% CI 0.62–1.70). Similar null results were observed for dominant and additive models. APOL1 variants were not associated with HIV-1 viral load or with risk of progression to AIDS [Relative hazards (RH) 1.33, 95% CI 0.30–5.89 and 0.96, 95% CI 0.49–1.88, for recessive and additive models, respectively]. In summary, we found no evidence that APOL1 variants are associated with host susceptibility to HIV-1 acquisition, set-point HIV-1 viral load or time to incident AIDS. These results suggest that APOL1 variants are unlikely to influence HIV infection or progression among individuals of African ancestry
    corecore