46 research outputs found

    Gaia, White Dwarfs, and the Age of the Galaxy

    Get PDF
    The Milky Way is composed of four major stellar populations: the thin disk, thick disk, bulge, and halo. At present, we do not know the age of any of these populations to better than one or two billion years. This lack of knowledge keeps us from answering fundamental questions about the Galaxy: When did the thin disk, thick disk, and halo form? Did they form over an extended period, and if so, how long? Was star formation continuous across these populations or instead occur in distinct episodes? The Gaia satellite is providing precise trigonometric parallaxes for a plethora of white dwarfs in each of these populations. We combine these parallaxes (and hence, distances) with photometry and analyze them using a modeling technique that relies on Bayesian statistics. This allows us to derive precise ages for individual white dwarfs and determine the age distribution and star formation history for each of the constituents of our Galaxy. Here we will present current progress in this endeavor, with emphasis on the ages of individual white dwarfs in the Hyades. Measuring the ages of individual white dwarfs in well-studied clusters provides proof of concept for our technique, as well exploration of any systematic offsets caused from timescales from main sequence models, as well as the initial-final mass relation

    Effect of atrial fibrillation on endovascular thrombectomy for acute ischemic stroke. A meta-analysis of individual patient data from six randomised trials: Results from the HERMES collaboration

    Get PDF
    Background: Atrial fibrillation is an important risk factor for ischemic stroke, and is associated with an increased risk of poor outcome after ischemic stroke. Endovascular thrombectomy is safe and effective in acute ischemic stroke patients with large vessel occlusion of the anterior circulation. This meta-analysis aims to investigate whether there is an interaction between atrial fibrillation and treatment effect of endovascular thrombectomy, and secondarily whether atrial fibrillation is associated with worse outcome in patients with ischemic stroke due to large vessel occlusion. Methods: Individual patient data were from six of the recent randomised clinical trials (MR CLEAN, EXTEND-IA, REVASCAT, SWIFT PRIME, ESCAPE, PISTE) in which endovascular thrombectomy plus standard care was compared to standard care alone. Primary outcome measure was the shift on the modified Rankin scale (mRS) at 90 days. Secondary outcomes were functional independence (mRS 0–2) at 90 days, National Institutes of Health Stroke Scale score at 24 h, symptomatic intracranial hemorrhage and mortality at 90 days. The primary effect parameter was the adjusted common odds ratio, estimated with ordinal logistic regression (shift analysis); treatment effect modification of atrial fibrillation was assessed with a multiplicative interaction term. Results: Among 1351 patients, 447 p

    Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks

    Get PDF
    Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentati

    The ecology of soil-borne human diseases

    No full text

    Gaia, White Dwarfs, and the Age of the Galaxy

    No full text
    The Milky Way is composed of four major stellar populations: the thin disk, thick disk, bulge, and halo. At present, we do not know the age of any of these populations to better than one or two billion years. This lack of knowledge keeps us from answering fundamental questions about the Galaxy: When did the thin disk, thick disk, and halo form? Did they form over an extended period, and if so, how long? Was star formation continuous across these populations or instead occur in distinct episodes? The Gaia satellite is providing precise trigonometric parallaxes for a plethora of white dwarfs in each of these populations. We combine these parallaxes (and hence, distances) with photometry and analyze them using a modeling technique that relies on Bayesian statistics. This allows us to derive precise ages for individual white dwarfs and determine the age distribution and star formation history for each of the constituents of our Galaxy. Here we will present current progress in this endeavor, with emphasis on the ages of individual white dwarfs in the Hyades. Measuring the ages of individual white dwarfs in well-studied clusters provides proof of concept for our technique, as well exploration of any systematic offsets caused from timescales from main sequence models, as well as the initial-final mass relation

    The power of principled bayesian methods in the study of stellar evolution

    No full text
    It takes years of effort employing the best telescopes and instruments to obtain high-quality stellar photometry, astrometry, and spectroscopy. Stellar evolution models contain the experience of lifetimes of theoretical calculations and testing. Yet most astronomers fit these valuable models to these precious datasets by eye. We show that a principled Bayesian approach to fitting models to stellar data yields substantially more information over a range of stellar astrophysics. We highlight advances in determining the ages of star clusters, mass ratios of binary stars, limitations in the accuracy of stellar models, post-main-sequence mass loss, and the ages of individual white dwarfs. We also outline a number of unsolved problems that would benefit from principled Bayesian analyses

    Enforcing non-safety security policies with program monitors

    No full text
    Abstract. We consider the enforcement powers of program monitors, which intercept security-sensitive actions of a target application at run time and take remedial steps whenever the target attempts to execute a potentially dangerous action. A common belief in the security community is that program monitors, regardless of the remedial steps available to them when detecting violations, can only enforce safety properties. We formally analyze the properties enforceable by various program monitors and find that although this belief is correct when considering monitors with simple remedial options, it is incorrect for more powerful monitors that can be modeled by edit automata. We define an interesting set of properties called infinite renewal properties and demonstrate how, when given any reasonable infinite renewal property, to construct an edit automaton that provably enforces that property. We analyze the set of infinite renewal properties and show that it includes every safety property, some liveness properties, and some properties that are neither safety nor liveness.

    European Atlas of Soil Biodiversity

    No full text
    corecore