1 research outputs found
Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells
Malachite
green (MG) is a fluorogenic dye that shows fluorescence enhancement
upon binding to its engineered cognate protein, a fluorogen activating
protein (FAP). Energy transfer donors such as cyanine and rhodamine
dyes have been conjugated with MG to modify the spectral properties
of the fluorescent complexes, where the donor dyes transfer energy
through Förster resonance energy transfer to the MG complex
resulting in binding-conditional fluorescence emission in the far-red
region. In this article, we use a violet-excitable dye as a donor
to sensitize the far-red emission of the MG-FAP complex. Two blue
emitting fluorescent coumarin dyes were coupled to MG and evaluated
for energy transfer to the MG-FAP complex via its secondary excitation
band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue,
PB) showed the most efficient energy transfer and maximum brightness
in the far-red region upon violet (405 nm) excitation. These blue-red
(BluR) tandem dyes are spectrally varied from other tandem dyes and
are able to produce fluorescence images of the MG-FAP complex with
a large Stokes shift (>250 nm). These dyes are cell-permeable and
are used to label intracellular proteins. Used together with a cell-impermeable
hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able
to visualize extracellular, intracellular, and total pools of cellular
protein using one fluorogenic tag that combines with distinct dyes
to effect different spectral characteristics