7,138 research outputs found
Analysis of exhaustive limited service for token ring networks
Token ring operation is well-understood in the cases of exhaustive, gated, gated limited, and ordinary cyclic service. There is no current data, however, on queueing models for the exhaustive limited service type. This service type differs from the others in that there is a preset maximum (omega) on the number of packets which may be transmitted per token reception, and packets which arrive after token reception may still be transmitted if the preset packet limit has not been reached. Exhaustive limited service is important since it closely approximates a timed token service discipline (the approximation becomes exact if packet lengths are constant). A method for deriving the z-transforms of the distributions of the number of packets present at both token departure and token arrival for a system using exhaustive limited service is presented. This allows for the derivation of a formula for mean queueing delay and queue lengths. The method is theoretically applicable to any omega. Fortunately, as the value of omega becomes large (typically values on the order of omega = 8 are considered large), the exhaustive limited service discipline closely approximates an exhaustive service discipline
Queueing models for token and slotted ring networks
Currently the end-to-end delay characteristics of very high speed local area networks are not well understood. The transmission speed of computer networks is increasing, and local area networks especially are finding increasing use in real time systems. Ring networks operation is generally well understood for both token rings and slotted rings. There is, however, a severe lack of queueing models for high layer operation. There are several factors which contribute to the processing delay of a packet, as opposed to the transmission delay, e.g., packet priority, its length, the user load, the processor load, the use of priority preemption, the use of preemption at packet reception, the number of processors, the number of protocol processing layers, the speed of each processor, and queue length limitations. Currently existing medium access queueing models are extended by adding modeling techniques which will handle exhaustive limited service both with and without priority traffic, and modeling capabilities are extended into the upper layers of the OSI model. Some of the model are parameterized solution methods, since it is shown that certain models do not exist as parameterized solutions, but rather as solution methods
Fe-bump instability: the excitation of pulsations in subdwarf B and other low-mass stars
We consider the excitation of radial and non-radial oscillations in low-mass
B stars by the iron-bump opacity mechanism. The results are significant for the
interpretation of pulsations in subdwarf B stars, helium-rich subdwarfs and
extreme helium stars, including the EC14026 and PG1716 variables. We
demonstrate that, for radial oscillations, the driving mechanism becomes
effective by increasing the contrast between the iron-bump opacity and the
opacity from other sources. The location of the iron-bump instability boundary
depends on the mean molecular weight in the envelope and also on the radial
order of the oscillation. A bluer instability boundary is provided by
increasing the iron abundance alone, explaining the observed EC14026 variables,
and by higher radial order oscillations. We show that the coolest EC14026
variables may vary in the fundamental radial mode, but the hottest variables
must be of higher radial order. In considering non-radial oscillations, we
demonstrate that g-modes of high radial order and low spherical degree (l<4)
may be excited in some blue horizontal branch stars with near-normal
composition (Z=0.02). Additional iron enhancement extends the g-mode
instability zone to higher effective temperatures and also creates a p-mode
instability zone. With sufficient iron, the p-mode and g-mode instability zones
overlap, allowing a small region where the EC14026 and PG1716-type variability
can be excited simultaneously. However its location is roughly 5000 K too low
compared with the observed boundary between EC14026 and PG1716 variables.Comment: MNRAS, in press, 16 pages, 13 figure
Documentation for the token ring network simulation system
A manual is presented which describes the language features of the Token Ring Network Simulation System. The simulation system is a powerful simulation tool for token ring networks which allows the specification of various Medium Access Control (MAC) layer protocols as well as the specification of various features of upper layer ISO protocols. In addition to these features, it also allows the user to specify message and station classes virtually to any degree of detail desired. The choice of a language instead of an interactive system to specify network parameters was dictated by both flexibility and time considerations. The language was developed specifically for the simulation system, and is very simple. It is also user friendly in that language elements which do not apply to the case at hand are ignored rather than treated as errors
Increasing the efficiency of pooled estimation with a block covariance structure
Econometrics ; Econometric models
U.S. banks, competition, and the Mexican banking system: how much will NAFTA matter?
Bank competition ; North American Free Trade Agreement ; Mexico
- …