9 research outputs found

    A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors

    No full text
    Organic stretchable electronics have attracted extensive scientific and industrial interest because they can be stretched, twisted, or compressed, enabling the next-generation of organic electronics for human/machine interfaces. These electronic devices have already been described for applications such as field-effect transistors, photovoltaics, light-emitting diodes, and sensors. High-performance stretchable electronics, however, currently still involve complicated processing steps to integrate the substrates, semiconductors, and electrodes for effective performance. Herein, we describe a facile method to efficiently identify suitable semiconducting polymers for organic stretchable transistors using soft contact lamination. In our method, the various polymers investigated are first transferred on an elastomeric poly­(dimethylsiloxane) (PDMS) slab and subsequently stretched (up to 100%) along with the PDMS. The polymer/PDMS matrix is then laminated on source/drain electrode-deposited Si substrates equipped with a PDMS dielectric layer. Using this device configuration, the polymer semiconductors can be repeatedly interrogated with laminate/delaminate cycles under different amounts of tensile strain. From our obtained electrical characteristics, e.g., mobility, drain current, and on/off ratio, the strain limitation of semiconductors can be derived. With a facile soft contact lamination testing approach, we can thus rapidly identify potential candidates of semiconducting polymers for stretchable electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics
    corecore