9,420 research outputs found

    Entanglement of two delocalised electrons

    Full text link
    Several convenient formulae for the entanglement of two indistinguishable delocalised spin-1/2 particles are introduced. This generalizes the standard formula for concurrence, valid only in the limit of localised or distinguishable particles. Several illustrative examples are given.Comment: 4 page

    Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase

    Get PDF
    A micro-porous hollow fibre membrane contactor (HFMC) operated in sweep-gas mode has been studied to enable the recovery of dissolved methane from water in concentrated form. At high sweep-gas flow rates, up to 97% dissolved methane removal efficiency is achievable which is sufficient to achieve carbon neutrality (around 88%). An increase in methane composition of the recovered sweep-gas was achievable through two primary mechanisms: (i) an increase in liquid velocity which improved dissolved methane mass transfer into the gas phase; and (ii) a reduction in gas flow which lowered dilution from the receiving gas phase. It was posited that further refinement of the methane content was provided through counter-diffusion of the nitrogen sweep-gas into the liquid phase. Within the boundary conditions studied, the methane composition of the recovered gas phase exceeded the threshold for use in micro-turbines for electricity production. However, reducing the gas-to-liquid ratio to enhance gas phase methane purity introduced gas-phase controlled mass transfer which constrained removal efficiency. Whilst this reduction in removal efficiency can be compensated for by extending path length (i.e. more than one module in series), it is suggested that the gas-phase controlled conditions encountered were also a product of poor shell-side dispersion rather than an approach toward the limiting theoretical gas-to-liquid ratio. This implies that further optimisation can be ascertained through improved membrane contactor design. Importantly, this study demonstrates that micro-porous hollow fibre membrane contactors provide a compact process for recovery of dissolved methane in sufficient concentration for re-use

    Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading

    Get PDF
    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or ‘slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (VL). Whilst the highest CO2 flux was recorded at high VL, selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required

    Biogas upgrading by chemical absorption using ammonia rich absorbents derived from wastewater

    Get PDF
    The use of ammonia (NH3) rich wastewaters as an ecological chemical absorption solvent for the selective extraction of carbon dioxide (CO2) during biogas upgrading to ‘biomethane’ has been studied. Aqueous ammonia absorbents of up to 10,000 gNH3 m−3 demonstrated CO2 absorption rates higher than recorded in the literature for packed columns using 20,000–80,000 g NH3 m−3 which can be ascribed to the process intensification provided by the hollow fibre membrane contactor used in this study to support absorption. Centrifuge return liquors (2325 g m−3 ionised ammonium, NH4+) and a regenerant (477 gNH4+ m−3) produced from a cationic ion exchanger used to harvest NH4+ from crude wastewater were also tested. Carbon dioxide fluxes measured for both wastewaters compared reasonably with analogue ammonia absorption solvents of equivalent NH3 concentration. Importantly, this demonstrates that ammonia rich wastewaters can facilitate chemically enhanced CO2 separation which eliminates the need for costly exogenic chemicals or complex chemical handling which are critical barriers to implementation of chemical absorption. When testing NH3 analogues, the potential to recover the reaction product ammonium bicarbonate (NH4HCO3) in crystalline form was also illustrated. This is significant as it suggests a new pathway for ammonia separation which avoids biological nitrification and produces ammonia stabilised into a commercially viable fertiliser (NH4HCO3). However, in real ammonia rich wastewaters, sodium bicarbonate and calcium carbonate were preferentially formed over NH4HCO3 although it is proposed that NH4HCO3 can be preferentially formed by manipulating both ion exchange and absorbent chemistry

    Non-adiabatically driven electron in quantum wire with spin-orbit interaction

    Full text link
    An exact solution is derived for the wave function of an electron in a semiconductor quantum wire with spin-orbit interaction and driven by external time dependent harmonic confining potential. The formalism allows analytical expressions for various quantities to be derived, such as spin and pseudo-spin rotations, energy and occupation probabilities for excited states. It is demonstrated how perfect spin and pseudo-spin flips can be achieved at high frequencies of order \omega, the confining potential level spacing. By an appropriately chosen driving term, spin manipulation can be exactly performed far into the non-adiabatic regime. Implications for spin-polarised emission and spin-dependent transport are also discussed.Comment: 11 pages, 3 figure

    DataWarp: Building Applications which Make Progress in an Inconsistent World

    No full text
    The usual approach to dealing with imperfections in data is to attempt to eliminate them. However, the nature of modern systems means this is often futile. This paper describes an approach which permits applications to operate notwithstanding inconsistent data. Instead of attempting to extract a single, correct view of the world from its data, a DataWarp application constructs a collection of interpretations. It adopts one of these and continues work. Since it acts on assumptions, the DataWarp application considers its recent work to be provisional, expecting eventually most of these actions will become definitive. Should the application decide to adopt an alternative data view, it may then need to void provisional actions before resuming work. We describe the DataWarp architecture, discuss its implementation and describe an experiment in which a DataWarp application in an environment containing inconsistent data achieves better results than its conventional counterpart
    • …
    corecore