9 research outputs found

    The Urbach tail in silica glass from first principles

    Full text link
    We present density-functional theory calculations of the optical absorption spectra of silica glass for temperatures up to 2400 K. The calculated spectra exhibit exponential tails near the fundamental absorption edge that follow the Urbach rule, in good agreement with experiments. We also discuss the accuracy of our results by comparing to hybrid exchange correlation functionals. By deriving a simple relationship between the exponential tails of the absorption coefficient and the electronic density-of-states, we establish a direct link between the photoemission and the absorption spectra near the absorption edge. This relationship is subsequently employed to determine the lower bound to the Urbach frequency regime. Most interestingly, in this frequency interval, the optical absorption is Poisson distributed with very large statistical fluctuations. Finally, We determine the upper bound to the Urbach frequency regime by identifying the frequency at which transition to Poisson distribution takes place.Comment: 5 pages, 3 figure

    Thermal annealing of laser damage precursors on fused silica surfaces

    Get PDF
    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes

    Distributed Effects in High Power RF LDMOS Transistors

    No full text
    Abstract -This paper focuses on the effects of distributed RF transmission lines on performance aspects, such as, gain, output power, efficiency etc. in high power RF LDMOS amplifiers. The methodology to model and capture the distributed effects will be discussed. Suitable alternatives to mitigate power loss due to distributive effects in large transistors will be presented. Also, the contributions of the package to the overall device performance will be addressed

    Laser damage mechanisms in conductive widegap semiconductor films

    No full text
    Laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si: GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN, carbon complexes were proposed as potential damage precursors or markers
    corecore