18 research outputs found

    Linking the concentrations of itraconazole and 2-hydroxypropyl-β-cyclodextrin in human intestinal fluids after oral intake of Sporanox<sup>®</sup>

    Get PDF
    In a previously performed small-scale clinical study, healthy volunteers were asked to ingest an oral solution of itraconazole (Sporanox®) containing 40% 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) (i) with or (ii) without a standardized volume of water (240 mL) after which gastrointestinal and blood samples were collected. Although omitting water during the administration of Sporanox® resulted in noticeably higher duodenal concentrations of itraconazole, systemic exposure was almost unaffected. It is assumed that this discrepancy can be explained by differences in the extent of entrapment of itraconazole in the duodenum caused by differential complexation depending on the concentration of cyclodextrins. To further substantiate this hypothesis, the quantification of HP-β-CD concentrations in the aspirated intestinal fluids was performed by LC-MS/MS. When comparing the intestinal concentrations of itraconazole and HP-β-CD for one single healthy volunteer (HV02) in both test conditions, an excellent correlation was observed (Spearman's rank coefficient of 0.96). Moreover, the data suggest that, similar to aqueous buffer media, also in human intestinal fluids a non-linear relationship exists between itraconazole solubility and HP-β-CD concentration (Ap-type profile; Spearman's rank coefficient of 0.78), indicating that higher order complexes are formed at higher concentrations of HP-β-CD. This difference in extent of entrapment in the inclusion complexes helps to understand the observed impact of water intake on precipitation and permeation behavior of itraconazole in man. Without water intake, higher HP-β-CD concentrations resulted in less precipitation and increased duodenal concentrations of itraconazole. On the other hand, the stronger interaction at higher HP-β-CD concentrations reduced the free fraction of the drug explaining that increased intraluminal concentrations of itraconazole were not translated into an enhanced uptake. In conclusion, quantifying the concentrations of the solubilizing agent HP-β-CD in human intestinal fluids appeared to be of crucial importance to interpret the intraluminal behavior of an orally administered cyclodextrin-based solution

    Site dependent intestinal absorption of darunavir and its interaction with ketoconazole

    No full text
    The expression of P-gp increases from proximal to distal parts of the small intestine, whereas for P450 enzymes the expression is reported to be highest in duodenum and jejunum, decreasing to more distal sites. To evaluate to what extent the regional differences in expression of P-gp and P450 enzymes affect the absorption of a dual substrate, we investigated the transport of darunavir across different small intestinal segments (duodenum, proximal jejunum and ileum). Moreover, the effect of ketoconazole on the intestinal absorption of darunavir was explored, since these drugs are commonly co-administered. Performing the rat in situ intestinal perfusion technique with mesenteric blood sampling, we found no significant differences in the transport of darunavir at the different intestinal segments. The involvement of P-gp in the absorption of darunavir was clearly shown by coperfusion of darunavir with the P-gp inhibitor zosuquidar. In presence of zosuquidar, a 2.2-, 4.2- and 5.7-fold increase in Papp values were measured for duodenum, proximal jejunum and ileum, respectively. Involvement of P450 mediated metabolism in the absorption of darunavir could not be demonstrated in this rat model. Upon studying the drug-drug interaction of darunavir with ketoconazole, data were indicative for an inhibitory effect of ketoconazole on P-gp as the main mechanism for the increased transport of darunavir across the small intestine.status: publishe

    Human and simulated intestinal fluids as solvent systems to explore food effects on intestinal solubility and permeability

    No full text
    The mixed micelles and vesicles present in the intraluminal environment of the postprandial state exhibit suitable solubilizing capacities for lipophilic drugs. This increase in solubility, however, is accompanied by a decrease in the free fraction caused by micellar entrapment of these lipophilic compounds. In this study, both simulated and aspirated human intestinal fluids of fasted and fed state conditions were used to evaluate the influence of food on the intestinal disposition of a series of structurally related β-blockers, with varying logP values. Using the in situ intestinal perfusion technique with mesenteric blood sampling in rats, it was demonstrated that fed state conditions significantly decreased the absorptive flux of the more lipophilic compounds metoprolol, propranolol and carvedilol, whereas the influence on the flux of the hydrophilic β-blocker atenolol was limited. The solubility of BCS class II compound carvedilol was found to increase significantly in simulated and aspirated media of the fed state. Intestinal perfusions using intestinal media saturated with carvedilol, revealed a higher flux in the fasted state compared to the fed state, despite the higher solubility in the fed state. This study underscores the importance of addressing the complex nature of the behavior of compounds in the intraluminal environment in fasted and fed state conditions. Moreover, our data point out the value of studying the effect of food on both solubility and permeability using biorelevant experimental conditions.publisher: Elsevier articletitle: Human and simulated intestinal fluids as solvent systems to explore food effects on intestinal solubility and permeability journaltitle: European Journal of Pharmaceutical Sciences articlelink: http://dx.doi.org/10.1016/j.ejps.2014.07.009 content_type: article copyright: Copyright © 2014 Elsevier B.V. All rights reserved.status: publishe

    Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: In vitro, rat in situ and human in vivo studies

    Get PDF
    The aim of this study was to evaluate the intestinal disposition of abiraterone acetate, an ester prodrug of the anticancer agent abiraterone. Stability of the prodrug and solubility and dissolution characteristics of both abiraterone and abiraterone acetate were monitored in vitro. Moreover, the in vivo intraluminal concentrations of abiraterone and abiraterone acetate upon intake of one tablet of 250mg abiraterone acetate were assessed in healthy volunteers. The intestinal absorption resulting from the intraluminal behavior of the ester prodrug was determined using the rat in situ intestinal perfusion technique with mesenteric blood sampling. Simulated and aspirated human intestinal fluids of the fasted state were used as solvent systems. Upon incubation of abiraterone acetate in human intestinal fluids in vitro, rapid hydrolysis of the prodrug was observed, generating abiraterone concentrations largely exceeding the apparent solubility of abiraterone, suggesting the existence of intestinal supersaturation. These findings were confirmed in vivo, by intraluminal sampling of duodenal fluids upon oral intake of an abiraterone acetate tablet by healthy volunteers. Rat in situ intestinal perfusion experiments performed with suspensions of abiraterone and abiraterone acetate in human intestinal fluids of the fasted state revealed significantly higher flux values upon perfusion with the prodrug than with abiraterone. Moreover, rat in situ intestinal perfusion with abiraterone acetate suspensions in simulated fluids of the fasted state in presence or absence of esterases demonstrated that increased hydrolytic activity of the perfusion medium was beneficial to the intestinal absorption of abiraterone. In conclusion, the rapid hydrolysis of abiraterone acetate in the intraluminal environment appears to result in fast and extensive generation of abiraterone supersaturation, creating a strong driving force for abiraterone absorption.publisher: Elsevier articletitle: Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: In vitro, rat in situ and human in vivo studies journaltitle: European Journal of Pharmaceutics and Biopharmaceutics articlelink: http://dx.doi.org/10.1016/j.ejpb.2015.01.001 content_type: article copyright: Copyright © 2015 Elsevier B.V. All rights reserved.status: publishe

    The effect of food on the intraluminal behavior of abiraterone acetate in man

    No full text
    To relate the reported positive effect of food on the oral bioavailability of abiraterone to the intraluminal behavior of abiraterone acetate, an in vivo experiment was performed, in which duodenal fluids and plasma samples were collected from healthy volunteers after the administration of abiraterone acetate in fasted and postprandial conditions. The plasma concentration-time profiles confirmed the positive food effect. Nevertheless, intraduodenal concentrations of abiraterone acetate and abiraterone did not fully reflect this observation. This apparent discrepancy was explored by performing several in vitro experiments including solubility, dissolution, and transfer studies. Gastrointestinal transfer studies illustrated a positive impact of gastric processing of the abiraterone acetate formulation on the duodenal concentrations in the fasted state, which could not be observed in the postprandial condition. As the influence of gastric dissolution on the intraluminal concentrations in the small intestine declines aborally, it is most likely the superior solubility of abiraterone acetate and abiraterone in intestinal fluids of the fed state that dictates the food effect. Furthermore, N-oxide abiraterone sulfate and abiraterone sulfate appeared in the duodenum at significantly later time points than abiraterone, suggesting biliary excretion of these abiraterone metabolites; this was confirmed by in situ biliary excretion experiments in rats.publisher: Elsevier articletitle: The Effect of Food on the Intraluminal Behavior of Abiraterone Acetate in Man journaltitle: Journal of Pharmaceutical Sciences articlelink: http://dx.doi.org/10.1016/j.xphs.2016.03.008 content_type: article copyright: © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.status: publishe
    corecore