2 research outputs found

    The insulin-like growth factor system and adenocarcinoma of the colon

    Get PDF
    The insulin-like growth factor (IGF) system is important in normal growth and development. However, it is also known to be involved with malignant transformation and cellular proliferation. IGF binding proteins modulate the biological activity of IGF-I, either potentiating or inhibiting its activity, as well as determining how much enters the circulation at any one time. IGF binding protein-4 (IGFBP-4), for example is believed to be inhibitory to the effects of IGF-I. This thesis shows that the colon cancer cell lines Colo 205, HT29 and WiDR proliferate in response to IGF-I, and that IGFBP-4 at high concentrations inhibits their growth. However, it was found that with lower concentrationsof IGFBP-4, proliferation in HT29 and WiDR cells increased. Nevertheless in two cell lines, IGFBP-4 partially negated the proliferative effects of IGF-I. An antibody against IGFBP-4 was used to show that endogenous IGFBP-4 plays an important role in modifying cell growth. In order to start in vivo experiments which required considerable quantities of IGFBP-4, this protein was produced in an expression system and purified using an immunoaffinity column method. The rhIGFBP-4 thus produced was shown to be functional and to inhibit colorectal cancer cell growth in vitro. A nude mouse model of colon cancer was produced and the expression of components of the IGF system in this model determined using PCR. Experiments were performed using conditioned medium from Colo 205 cells to investigate IGFBP-4 protease activity. This thesis shows that manipulation of the IGF system is a potential target for further research into treatment for adenocarcinoma of the colon

    Development of Advanced Dressings for the Delivery of Progenitor Cells

    No full text
    Culture surfaces that substantially reduce the degree of cell manipulation in the delivery of cell sheets to patients are described. These surfaces support the attachment, culture, and delivery of multipotent adult progenitor cells (MAPC). It was essential that the processes of attachment/detachment to the surface did not affect cell phenotype nor the function of the cultured cells. Both acid-based and amine-based surface coatings were generated from acrylic acid, propanoic acid, diaminopropane, and heptylamine precursors, respectively. While both functional groups supported cell attachment/detachment, amine coated surfaces gave optimal performance. X-ray photoelectron spectroscopy (XPS) showed that at a primary amine to carbon surface ratio of between 0.01 and 0.02, greater than 90% of attached cells were effectively transferred to a model wound bed. A dependence on primary amine concentration has not previously been reported. After 48 h of culture on the optimized amine surface, PCR, functional, and viability assays showed that MAPC retained their stem cell phenotype, full metabolic activity, and biological function. Consequently, in a proof of concept experiment, it was shown that this amine surface when coated onto a surgical dressing provides an effective and simple technology for the delivery of MAPC to murine dorsal excisional wounds, with MAPC delivery verified histologically. By optimizing for cell delivery using a combination of in vitro and in vivo techniques, we developed an effective surface for the delivery of MAPC in a clinically relevant format
    corecore