55 research outputs found

    Sequence specific assignment and determination of OSR1 C-terminal domain structure by NMR

    Get PDF
    The binding of SPAK and OSR1 kinases to their upstream WNK kinases is mediated by the interaction of their highly conserved SPAK and OSR1 C-terminal domain (CTD) to RFx [V/I] peptide sequences from WNK kinases. A SPAK CTD knock-in mouse, where SPAK was unable to bind WNK kinases, exhibited low blood pressure. This highlighted the inhibition of SPAK and OSR1 kinases binding to their upstream WNK kinases as a plausible strategy in the discovery of new antihypertensive agents. To facilitate such endeavour, we herein report the optimisation and expression of isotopically labelled OSR1 CTD in E.coli and a structural model based on the sequence specific NMR assignments giving insights into the structure of apo OSR1 CTD. Additionally, we identified the OSR1 CTD amino acid residues that are important for the binding of an 18-mer RFQV peptide derived from human WNK4. Collectively, the NMR backbone assignments and the generated OSR1 CTD 3D model reported in this work will be a powerful resource for the NMR-based discovery of small molecule OSR1 (and SPAK) kinase inhibitors as potential antihypertensive agents

    A novel pathway for outer membrane protein biogenesis in Gram-negative bacteria

    Get PDF
    The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM

    Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2

    Get PDF
    Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs

    Sequence-specific 1H, 13C and 15N backbone resonance assignments of the plakin repeat domain of human envoplakin

    Get PDF
    The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments

    High-Speed Tracer Analysis of Metabolism (HS-TrAM)

    Get PDF
    Tracing the fate of stable isotopically-enriched nutrients is a sophisticated method of describing and quantifying the activity of metabolic pathways. Nuclear Magnetic Resonance (NMR) offers high resolution data, yet is under-utilised due to length of time required to collect the data, quantification requiring multiple samples and complicated analysis. Here we present two techniques, quantitative spectral filters and enhancement of the splitting due to J-coupling in 1H,13C-HSQC NMR spectra, which allow the rapid collection of NMR data in a quantitative manner on a single sample. The reduced duration of HSQC spectra data acquisition opens up the possibility of real-time tracing of metabolism including the study of metabolic pathways in vivo. We show how these novel techniques can be used to trace the fate of labelled nutrients in a whole organ model of kidney preservation prior to transplantation using a porcine kidney as a model organ, and also show how the use of multiple nutrients, differentially labelled with 13C and 15N, can be used to provide additional information with which to profile metabolic pathways

    Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    Get PDF
    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks
    corecore