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ARTICLE

Binding of the periplakin linker requires vimentin
acidic residues D176 and E187
Elena Odintsova1,8, Fiyaz Mohammed2,8, Catharine Trieber 3,8, Penelope Rodriguez-Zamora 1,6,

Caezar Al-Jassar1, Tzu-Han Huang4, Claudia Fogl1,7, Timothy Knowles 4, Pooja Sridhar4, Jitendra Kumar3,

Mark Jeeves1, Martyn Chidgey1,5✉ & Michael Overduin 3

Plakin proteins form connections that link the cell membrane to the intermediate filament

cytoskeleton. Their interactions are mediated by a highly conserved linker domain through an

unresolved mechanism. Here analysis of the human periplakin linker domain structure reveals

a bi-lobed module transected by an electropositive groove. Key basic residues within the

periplakin groove are vital for co-localization with vimentin in human cells and compromise

direct binding which also requires acidic residues D176 and E187 in vimentin. We propose a

model whereby basic periplakin linker domain residues recognize acidic vimentin side chains

and form a complementary binding groove. The model is shared amongst diverse linker

domains and can be used to investigate the effects of pathogenic mutations in the desmo-

plakin linker associated with arrhythmogenic right ventricular cardiomyopathy. Linker mod-

ules either act solely or collaborate with adjacent plakin repeat domains to create strong and

adaptable tethering within epithelia and cardiac muscle.
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The plakin proteins connect the three elements of the
cytoskeleton, namely intermediate filaments (IFs), micro-
filaments and microtubules, to each other, to junctional

complexes at the membrane and to intracellular organelles.
There are seven members of the superfamily in mammals: peri-
plakin, envoplakin, desmoplakin, plectin, bullous pemphigoid
antigen 1 (BPAG1; also known as dystonin), epiplakin and
microtubule–actin cross-linking factor 1. The roles of family
members in diverse biological processes, including cell–cell and
cell–matrix adhesion, cell migration, mechanotransduction and
cell signalling1, are critically dependent upon their ability to
interact with the cell cytoskeleton. Plakin protein recognition of
IFs is mediated by plakin repeat domains (PRDs) and linker
modules. The former interact with IF proteins via complementary
electrostatic interactions2,3, but the molecular mechanism by
which linker modules connect to the IF cytoskeleton remains
elusive.

Periplakin and envoplakin initiate formation of the cornified
envelope, a layer of cross-linked protein that forms beneath the
plasma membrane during keratinocyte differentiation, creating
the skin’s permeability barrier4. These proteins are targeted by
antibodies in paraneoplastic pemphigus, a mucocutaneous skin
blistering disorder that accompanies neoplasia, often via C-
terminal linker-containing sites5. Such antibodies disrupt kerati-
nocyte cell adhesion in culture, although the mechanism under-
lying this effect remains obscure6. Desmoplakin is a constituent of
desmosomes that form strong junctions between cells in epithelia
and cardiac muscle. It bridges the gap between other desmosomal
proteins and keratin IFs in epithelial cells, desmin IFs in cardi-
omyocytes and vimentin IFs in meningeal cells and follicular
dendritic cells of lymph nodes7. Mutations in desmoplakin result
in an array of diseases that affect the skin, hair and heart and
sometimes all three8. Arrhythmogenic right ventricular cardio-
myopathy (ARVC) leads to cardiac arrest and sudden death and
results from mutations in the genes encoding desmosomal pro-
teins expressed in the heart9. Pathogenic mutations are dispersed
throughout desmoplakin, including in the C-terminal tail region
responsible for engaging IFs10.

Plectin is expressed in skin, muscle and peripheral nerve, and
links the IF cytoskeleton to hemidesmosomal cell–matrix junc-
tions in the epidermis, and to various structures in skeletal,
smooth and cardiac muscle11. Mutations in plectin cause the skin
blistering disease epidermolysis bullosa simplex (EBS)1 and limb-
girdle muscular dystrophy12. The BPAG1e is isoform expressed in
the epidermis, interacts with IFs and contributes to the structural
integrity of hemidesmosomes13. Mutations in DNA encoding
BPAG1e cause EBS14, and circulating anti-BPAG1 antibodies are
detected in patients with the autoimmune skin blistering disease
bullous pemphigoid15.

Common to all these proteins is the conserved linker domain,
which lacks a validated structure and mechanism. The periplakin
linker module sequence comprises 110 residues, encompassing
most of periplakin’s conserved C-terminal tail region, and is solely
responsible for direct IF tethering, underscoring its functional
significance. The C-terminal tails of other plakin proteins,
including envoplakin, desmoplakin, plectin and BPAG1e also
contain a linker module as well as a series of PRDs comprised of a
number of PR modules. Envoplakin has just one PRD, while
BPAG1e, desmoplakin and plectin contain two, three and six,
respectively. PRDs are globular modules that possess a basic
binding groove that accommodates IF rods through com-
plementary electrostatic interactions2,3. In envoplakin the linker
domain joins its central rod to its singular PRD whereas in des-
moplakin, BPAG1e and plectin the linker connects the penultimate
and C-terminal PRDs, suggesting functional interconnectivity. The
interaction of PRDs and linkers with IFs is vital for the

maintenance of tissue integrity. Truncating mutations that result in
the loss of all three desmoplakin PRDs and the linker region cause
lethal acantholytic epidermolysis bullosa, a devastating skin blis-
tering disease that is characterised by catastrophic fluid loss and
early death16.

The periplakin linker domain is unusual in that it constitutes
the only means by which periplakin can directly interact with
IFs. It interacts with keratin 8 and vimentin in yeast two-hybrid
and protein–protein interaction assays17, and when transfected
into cultured cells it co-localises with IFs17–19. A crystal structure
of a periplakin linker construct has been determined (PDB entry
4Q28). It displays an elongated shape that fits into a molecular
envelope of desmoplakin’s C-terminus20. The PR-like motif
structure closely resembles the canonical PR2 repeat2, with the
notable exception that the second helix (H2) is shorter in peri-
plakin. The larger C-terminal PR-like module within the peri-
plakin linker aligns well with the N-terminal (Nt) PR-like motifs
found in desmoplakin PRD-B and PRD-C modules2. A peculiar
feature of the periplakin linker structure is that a N-terminal
hexa-histidine tag forms an extended β strand that pairs with the
corresponding region of a neighbouring symmetry related
molecule in the crystal lattice. This packing arrangement of the
affinity tag into the linker fold is clearly non-physiological.
Moreover, the crystallised periplakin construct lacks conserved
N-terminal residues that could normally form part of the
structure. Due to these artifacts, structural and functional vali-
dation is needed. Herein, we identify a basic groove within the
periplakin and desmoplakin linkers, and show that mutations
within their grooves disrupt co-localisation with vimentin IFs in
transfected cells. We also identify residues in periplakin linker
and vimentin that are critical for the interaction between the two
proteins, and propose a mechanism for recognition of IF binding
motifs.

Results
The periplakin linker reveals a positively charged groove. The
periplakin linker is found at the extreme C-terminus of the
periplakin protein (Supplementary Fig. 1a). The crystal structure
of the periplakin linker was determined by the Northeast Struc-
tural Genomics Consortium (PDB entry 4Q28) and briefly
described by Weis and colleagues20. In an attempt to verify the
crystal structure and resolve issues arising from the hexahistidine
tag, and the lack of N-terminal residues (K1646–L1654) that are
relatively conserved across the plakin family and highly conserved
in periplakins from different species (Supplementary Fig. 2a, b),
we attempted to determine the solution structure by nuclear
magnetic resonance (NMR). This was precluded by the lack of
stability of the protein despite extensive optimisation of solution
conditions. As an alternative we generated an I-TASSER model
of the periplakin linker encompassing residues K1646–K1756
(Fig. 1a). The model displays a similar secondary topology to that
of the crystal structure, forming a bi-lobed module connected by
long β-strands, although in the I-TASSER derived model the
dihedral angles for H1653 deviate from a typical β-sheet con-
formations leading to a disruption in the strand at the extreme N-
terminal end. Support for the model comes from the HSQC
spectrum of the 1H15N-labelled periplakin linker which is well-
dispersed, as well as circular dichroism data that demonstrate that
the protein adopts an α/β fold structure (Fig. 1b, Supplementary
Fig. 2c). In addition secondary structure prediction for the des-
moplakin linker based on NMR chemical shift data and calculated
using Talos+ suggest that the desmoplakin linker has a central β-
strand in solution (Supplementary Fig. 2a). Given the high
sequence similarity between the desmoplakin and periplakin
linkers it is likely that the periplakin linker adopts a similar
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overall topology in solution. The precise conformation of the
extreme N-terminus and first β-strand of periplakin’s linker
merits further experimental analysis. Nevertheless the structure
does unequivocally reveal two PR-like motifs that flank a central
basic groove that could accommodate a IF rod (Fig. 1a). To

identify candidate periplakin residues responsible for IF recog-
nition detailed analysis of the central basic groove was performed.
The groove is enriched with positively charged residues including
R1655, R1656, K1687, R1689, R1713 and K1714 (Fig. 1a), several
of which are highly conserved (Supplementary Fig. 2a, b) based
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Fig. 1 Co-localisation with vimentin intermediate filaments is compromised by mutations in periplakin’s basic groove. a Electrostatic surface potential
and ribbon representation for the I-TASSER derived periplakin linker domain model (C-score= 0.99). Electrostatic surface potential was calculated with
DelPhi with the potential scale ranging from −7 (red) to +7 (blue) in units of kT/e. The putative vimentin docking site is shown (black dashed circle). The
ribbon model shows a PR2-like motif (green) and an Nt PR-like module (grey), and highlights the position of residues (stick format) mutated in periplakin
transfected cells. b Two dimensional 1H,15N-resolved NMR spectra of the periplakin linker domain. c Constructs encoding residues M1588–K1756 of human
periplakin with a C-terminal HA tag were transfected into HeLa cells. Cells were stained with anti-HA and anti-vimentin antibodies. Periplakin is stained
purple and vimentin is stained green in the merged images. The boxed areas are expanded on the far right-hand side. M merged image, HA periplakin
staining, V vimentin staining. Bars, 10 µm. d Manders’ overlap coefficient (MOC) was calculated for each image and is shown as a Tukey box plot with the
median and 25th and 75th percentiles of each distribution. An unpaired t test with Welch’s correction was performed on the data: Wild-type (WT) versus
R1655E/R1656E, p= 0.002; WT versus K1687E/R1689E, not significant; WT versus R1713E/K1714E, p= 0.03; WT versus R1737E/K1741E, p= 0.03. At
least five fields of view were analysed for each experiment. z-stacks were taken for each field and overlap coefficients calculated for each individual z-stack.
An average overlap coefficient was then calculated for each experiment and each experiment was repeated two to three times.
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on primary sequence analysis with the PRALINE (PRofile
ALIgNEment) tool21.

Basic groove mutations compromise interaction with vimentin.
The function of the linker domain’s basic groove was investigated
by testing the effects of mutations on the localisation of a peri-
plakin construct to IFs in transfected HeLa cells. The periplakin
construct consisted of a C-terminal portion of the rod domain,
the linker domain and a haemagglutinin antigen (HA) tag
(Supplementary Fig. 3a). This construct has previously been
shown to co-localise with IFs in transfected cells3,22, and as
expected showed extensive co-localisation with vimentin IFs
when transfected into HeLa cells with HA staining matching
filamentous staining for endogenous vimentin (Fig. 1c). In order
to perturb IF recognition, a series of double charge reversal
mutations were designed within the periplakin linker groove. In
particular the surface exposed R1655, R1656, K1687, R1689,
R1713 and K1714 residues were changed to glutamates. For a
control R1737 and K1741, which protrude from the Nt PR-like
module and are outside the groove, were substituted. Double
mutants R1655E/R1656E and R1713E/K1714E showed similar
patterns of staining with both mutant periplakin proteins mainly
distributed in small aggregates at the cell periphery (Fig. 1c).
Double mutant K1687E/R1689E showed a diffuse staining pattern
throughout the cytoplasm. In all three cases the pattern of
staining was strikingly different from that of the wild-type peri-
plakin protein. By contrast, double mutant, R1737E/K1741E
demonstrated a comparable pattern of staining to the wild-type
construct. Expression of wild-type and mutant periplakin con-
structs was similar by western blotting (Supplementary Fig. 3b).
Together this indicated that co-localisation was specifically
compromised by charge reversal mutations inside the putative
binding groove.

Two approaches were used to confirm the importance of
residues R1655, R1656, K1687, R1689, R1713 and K1714 in IF
binding. Quantification of co-localisation between periplakin
proteins and vimentin in transfected HeLa cells was analysed
using the Manders’ method23, which measures the fraction of
pixels with positive values in two channels. The values of
Manders’ overlap coefficient (MOC) range from 0 to 1 with an
overlap coefficient of 0.5 implying that one protein (as a fraction
of the fluorescence in one channel) co-localises with 50% of a
second protein in another channel. Cells transfected with the
wild-type periplakin construct exhibited an average MOC of
~0.45, indicating substantial co-localisation with vimentin
(Fig. 1d). Co-localisation was reduced in cells transfected with
double mutants R1655E/R1656E and R1713E/K1714E, with
average MOC values of 0.30 and 0.38, respectively. In cells
transfected with double mutant K1687E/R1689E the MOC was
~0.43, which is similar to that observed in wild-type cells,
presumably based in part on the diffuse cytosolic distribution of
the delocalised periplakin seen in these cells. The R1737E/K1741E
control cells displayed a MOC value of ~0.57, indicating
preservation of vimentin IF co-localisation.

To confirm the direct nature of the periplakin–vimentin
interactions, in vitro binding experiments were performed. A
periplakin construct spanning the entirety of the linker domain’s
conserved sequence (K1646–K1756) was purified to homogeneity.
Binding of the periplakin linker domain to a vimentinROD protein
encompassing coils 1A and 1B of the central rod domain (residues
T99–I249; Supplementary Fig. 1b) was measured. The vimentinROD

was labelled with a NT647 fluorescent group and incubated with
increasing concentrations of the periplakin linker domain in the
presence of 150mM NaCl for microscale thermophoresis (MST)-
based binding assays (Fig. 2a, Supplementary Table 1). Wild-type

periplakin linker bound to vimentinROD with a KD of 70.5 ± 3.8 μM.
Periplakin linker proteins containing mutations R1655E/R1656E,
K1687E/R1689E, R1713E/K1714E and R1737E/K1741E were
purified to homogeneity. All mutant proteins were folded, as
indicated by the similarity of their 1H,15N resolved spectra to that of
the wild-type protein (Supplementary Fig. 4a). Notably, variants
R1655E/R1656E, K1687E/R1689E and R1713E/K1714E showed
compromised binding to vimentinROD based on their affinities of
380 ± 51, 300 ± 54 and 135 ± 30 µM, respectively (Fig. 2a, Supple-
mentary Fig. 4b). Binding of control double mutant R1737E/
K1741E to vimentinROD was slightly stronger than that of the wild-
type protein (KD= 48 ± 11 µM versus 70.5 ± 3.8 μM). Interestingly,
this mutant also displayed a higher MOC value than the wild-type
protein (Fig. 1d). Collectively, these results support an electrostatic
mode of interaction in which basic residues R1655, R1656, K1687,
R1689, R1713 and K1714 within periplakin’s binding groove
(Fig. 1a) recognise vimentin filaments. To explore the role of
electrostatics in the binding, we examined the effect of salt on the
interaction (Supplementary Fig. 5, Supplementary Table 1).
Decreasing the salt concentration from 150 to 10mM NaCl led
to enhanced affinity of the wild-type linker/vimentin interaction
from 70.5 ± 3.8 to 31 ± 2 μM, indicating that electrostatic attraction
plays a role in linker domain-IF binding.

A critical motif for IF targeting and co-localisation in
transfected cells has previously been mapped to periplakin linker
residues 1694–1698 (DWEEI) based on deletion studies22. We
mapped this motif onto the periplakin linker domain model
(Fig. 2b). This highly conserved element is located in the PR2-like
motif and is proximal to the basic groove. The carboxyl group of
D1694 mediates an ionic interaction with R1655, a residue that
has proved to be critical for vimentin binding. Furthermore,
E1696 forms a salt bridge interaction with R1713 and this
interaction may allow R1713 to adopt a conformation that
favours IF binding (Fig. 2b). Finally, W1695 is also situated in
close proximity to the putative IF binding groove and forms
extensive non-polar stacking interactions with the residues
emanating from the extreme helix (H3) of the Nt PR-like motif
(Fig. 2b), thereby stabilising this region. Strikingly, mutation of
residues 4274–4277 (RKRR) in the plectin linker (equivalent to
periplakin residues L1654–S1657) to ANAA also abolishes IF co-
localisation in transfected cells24. Mapping of these basic residues
onto the I-TASSER derived plectin linker model (K4266-A4377)
reveals that K4275 and R4277 line the groove (Fig. 2c). Taken
together this supports the role of the basic groove as a key IF
recognition determinant.

Desmoplakin linker domain mutations affect co-localisation.
To investigate the IF binding mechanism of the desmoplakin
linker a model (residues Q2454–N2565) was calculated using I-
TASSER (Fig. 3a). The desmoplakin linker exhibited a basic
groove lined with positively charged side chains that included
residues K2463, R2464, K2494, R2522 and K2523 (Fig. 3a). The
desmoplakin linker domain expressed poorly in transfected HeLa
cells, necessitating use of a larger desmoplakin construct (DSPC,
residues T1960–A2822) which encompasses all three PRDs and
the linker domain (Supplementary Fig. 3a). Similar constructs co-
localise with vimentin IFs in cultured cells25–27. Following
transfection into cultured HeLa cells the DSPC protein co-
localised with vimentin IFs (Fig. 3b) with a MOC of 0.5 (Fig. 3c).
To determine the role of the desmoplakin linker domain in
vimentin targeting we deleted it from the DSPC construct to
produce a truncated protein DSPCΔLinker. Although the MOC
for DSPCΔLinker only showed a small reduction when compared
to the wild-type protein (Fig. 3c) there was a dramatic difference
in staining pattern with DSPCΔLinker distributed in dense
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dot-like structures, predominantly in the perinuclear area
(Fig. 3b). When glutamate substitutions of desmoplakin residues
K2463 and R2464 (equivalent to periplakin groove residues
R1655 and R1656) were introduced into the DSPC construct
staining was concentrated predominantly at the cell periphery
and the IF co-localisation was significantly reduced with a MOC
of ~0.36 (Fig. 3b, c). This suggests that the basic groove in the
desmoplakin linker also contributes to targeting the protein to the
cytoskeleton and thus constitutes the consensus function of this
module.

Residues C2501 and E2502 within the desmoplakin linker
domain are deleted in the ARVC mutant C2501-E2502del
(Supplementary Fig. 1a)28. Deletion of these residues resulted in
a staining pattern similar to that obtained with the DSPCΔLinker
protein, i.e. dense dot-like structures predominantly at the cell
periphery, with a corresponding reduction in the MOC (Fig. 3c).
To examine the effect of the C2501-E2502del mutation on linker
domain structure we collected a 1H,15N-HSQC NMR spectrum of
a linker domain construct lacking these two residues, and found
only minor signal perturbations (Fig. 4a). Aside from those
residues directly adjacent to the mutation the majority of the peak
differences between the spectra of the wild-type desmoplakin
linker and the C2501-E2502del mutant map to residues within
the α-helices of the Nt PR-like motif, suggesting slight

conformational changes in this region (Fig. 4b). Examination of
the putative desmoplakin linker structure showed that E2502
mediates salt bridge interactions with K2463 and R2464 (Fig. 4c),
and it is likely that it holds these two residues in a conformation
that facilitates IF binding. A model of the desmoplakin linker
with the C2501-E2502del mutation was generated to illuminate
this issue. Although deletion of residues C2501 and E2502 is
unlikely to severely compromise the overall secondary structure
arrangements relative to wild-type desmoplakin linker, subtle
differences within the positive groove were found. In the absence
of E2502 the R2464 side chain is predicted to swing away from
the IF binding groove region. However, the nearby carboxylate
group of E2503 may form compensatory salt bridge interactions
with R2522 and K2463 (Fig. 4d). It is conceivable that these
rearrangements result in the partial loss of co-localisation with
vimentin seen in the transfection experiments (Fig. 3b, c).

Introduction of the ARVC mutation R2541K (Supplementary
Fig. 1a)29 into the desmoplakin linker domain showed a similar
effect to the K2463E/R2464E mutant. That is, the mutant
distributed predominantly to the plasma membrane and
exhibited a reduced MOC (Fig. 3b, c). Again, only minor
alterations in the 1H,15N NMR spectra were observed when
compared to the wild-type linker protein (Supplementary Fig. 6a).
The majority of residues exhibiting the largest chemical shift
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perturbations were restricted to the Nt PR-like element
(Supplementary Fig. 6b). It is possible that these changes
adversely impact IF binding, explaining the lower MOC relative
to wild-type desmoplakin (Fig. 3c). The desmoplakin linker
model structure shows that R2541 protrudes from H2 of the Nt
PR-like motif and mediates a salt bridge interaction with D2545
(Supplementary Fig. 6c). This ionic interaction most likely
stabilises this helical region. In the case of the R2541K ARVC
mutation, the ε-amino moiety of lysine is predicted to form a
compensatory salt bridge interaction with the carboxylate group
of D2545 (Supplementary Fig. 6d) which is likely to stabilise this
helix, thereby preventing major structural rearrangements.

To further investigate the role of the desmoplakin linker in IF
binding it (i.e. residues Q2454–N2565) was purified to homo-
geneity, as were mutants K2463E/R2464E, E2495K/C2497R and
S2526K/Q2527K. All mutant desmoplakin linker proteins were
folded, as indicated by the similarity of their 1H,15N resolved
spectra to that of the wild-type protein (Supplementary Fig. 7a).
Residues K2463, R2464, E2495 and C2497 are found in the basic
groove (equivalent to periplakin residues R1655, R1656, K1687
and R1689, respectively), while residues S2526 and Q2527 are

beside the groove (Fig. 5a). The wild-type desmoplakin linker
showed very weak binding to the vimentinROD protein by MST,
as did the K2463E/R2464E and S2526K/Q2527K mutant linker
proteins (Fig. 5b, Supplementary Fig. 7b, Supplementary Table 2).
Interestingly, the E2495K/C2497R mutant revealed enhanced
binding to the vimentinROD when compared to the wild-type
desmoplakin linker protein (Fig. 5b), with an estimated KD of
600 ± 70 µM. Thus, increasing the basic character of the groove in
the desmoplakin linker (Fig. 5c) led to significantly enhanced
interactions with vimentin, although this was still considerably
weaker than that of the periplakin linker protein (KD= 70.5 ±
3.8 μM). This is consistent with desmoplakin employing its linker
domain and three PRDs to tether IFs, whereas periplakin relies on
its linker domain alone.

Binding data indicate that the desmoplakin linker binds much
less tightly to vimentinROD than the corresponding region
of periplakin. This finding was confirmed using NMR binding
assay and full-length vimentin (vimentinFL) protein (residues
M1–E466). NMR experiments were carried out in the absence of
salt to limit vimentin polymerisation into filaments that are too
large to be suitable for characterisation of interactions. In the
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absence of salt full length vimentin forms functional tetramers30,
which were added to 15N-labelled linkers from periplakin and
desmoplakin to respective molar ratios of 0.1:1, 0.5:1, 1:1 and 2:1.
Upon interaction with vimentin periplakin’s linker displayed
progressive 1H,15N peak broadening, indicating slow exchange on
the NMR timescale. The signals broadened dramatically, with only
2.3% of the linker amide peaks retaining at least 20% of their
starting intensities at half equimolar ligand concentration (Fig. 5d,
Supplementary Fig. 8). This suggests that the periplakin linker
assembles on vimentinFL tetramers to form large, stable, slowly
tumbling complexes. A similar, albeit less dramatic effect was
observed when vimentinFL was added to the 15N-labelled
desmoplakin linker. In this case, 17.9% of peaks retained at least
20% of their starting intensity, indicating that the desmoplakin
linker interaction with vimentin is weaker than that of the
periplakin linker. Binding of the periplakin mutant R1655E/
R1656E was compromised as expected when compared to the

wild-type periplakin linker with 99.1% of peaks retaining 20%
intensity. Similarly, binding of the desmoplakin mutant E2495K/
C2497R was enhanced when compared to that of the wild-type
desmoplakin linker, with no peaks retaining 20% of their starting
peak intensity (Fig. 5d). Thus the NMR binding results mirror
those by MST and cellular co-localisation, consistent with
electrostatic forces within the groove driving vimentin recognition.

A model for the periplakin linker–vimentin complex. Vimentin
is the best understood IF, and multiple structures are available to
build models of its assemblies. Monomeric vimentin is a rod-
shaped protein consisting of an α-helical central region that is
flanked by non-helical head and tail domains (Supplementary
Fig. 1b). Vimentin monomers have a strong tendency to dimerise
via the formation of α-helical coiled coil dimers. Dimers then
associate in half staggered anti-parallel fashion to form tetramers
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that laterally associate to form octamers and higher order oligo-
mers31. The vimentin dimer serves as the elementary building
block for IF assembly, and displays multiple acidic patches on its
surface that could be recognised by basic residues in the linker
domain groove. Periplakin linker domain-vimentin complexes
were modelled using the high ambiguity driven protein–protein
DOCKing (HADDOCK) programme32. The periplakin residues
identified as being crucial for co-localisation with vimentin in
transfection experiments (i.e. R1655, R1656, K1687, R1689,
R1713 and K1714) were used to restrain docking to conserved
negatively charged residues within available vimentin structures
(Supplementary Fig. 9, Supplementary Table 3). In the resulting
models vimentin consistently slotted into the periplakin linker
positive basic groove with minimal structural rearrangement.
This was not unexpected given the breadth of the groove and the
dimensions of the vimentin dimer, which consists almost entirely
of an α-helical coiled coil with multiple acidic patches along its
length. The angle of vimentin ingress and egress varied, and
several of vimentin’s acidic patches mediated favourable inter-
actions. The two lowest energy complex models obtained con-
sisted of the periplakin linker domain interacting with a vimentin
fragment encompassing residues T99–L189 (PDB 3S4R) and
E153–H238 (PDB 3SWK) (Fig. 6a, b, Supplementary Table 3). In
complex model 1 (Fig. 6a) electrostatic interactions were observed
between vimentin residues D162 and D166 and the periplakin
linker groove side chains R1689 and R1713. In complex model 2
the periplakin linker–vimentin interface was stabilised by ion pair
interactions mediated by vimentin residues E172, D176 and E180
and several basic side chains of the periplakin linker groove
(Fig. 6b). In addition, the vimentin residue E187 was in close
proximity to R1689 of periplakin underlying an additional
potential electrostatic interaction. To validate these electrostatic
docking modes a series of charge reversal mutations were
designed in the vimentinROD fragment and tested for effects on
linker recognition (Fig. 6c, Supplementary Fig. 10, Supplementary
Table 4). Residues D162, E172, D176, E180, E187 and E229 are
situated in acidic helical patches and were mutated to lysines.
Proton NMR spectra of the vimentin mutants (Supplementary
Fig. 11) demonstrate that these protein are correctly folded.
Binding interactions of these mutants with wild-type periplakin
linker was measured by MST. Two of the substitutions, D176K
and E187K, totally abolished the interaction of the vimentinROD

with the periplakin linker, suggesting that they contribute to a
docking site. Two mutants, E172K and E229K exhibited a mod-
erate increase in linker binding affinity whilst one, E180K,
exhibited a larger increase in affinity. One possible explanation
for the latter is that the lysine residue can form an ionic inter-
action with E1692 which borders the basic groove of the peri-
plakin module. The D162K mutant displayed wild-type binding
characteristics suggesting that this residue is not involved in
linker recognition. Overall, the data demonstrate the importance
of residues D176 and E187, and make complex model 2 the more
likely candidate for periplakin linker–vimentin binding. In this
model vimentin residues E172 and D176 from coil 1B are
recognised by periplakin R1655 and R1713, while vimentin’s
E180 contacts periplakin residues R1689 and K1714 (Fig. 6b). The
importance of periplakin residue R1713 and vimentin residue
D176 was confirmed in experiments showing that binding of
periplakin mutant R1713E to wild-type vimentinROD was reduced
whereas its binding to vimentin mutant D176K was enhanced
(Fig. 6d, Supplementary Fig. 12). Collectively, the presence of
residues E172, D176, E180 and E187 on a continuous acidic
surface that is conserved in IFs (Supplementary Fig. 6) suggests
that electrostatic interactions between basic residues in linker
domain grooves and acidic IF residues may be a widely used
mechanism of cytoskeletal attachment.

Discussion
Linker domains play important and diverse roles in plakin biol-
ogy that can be attributed to their universal and critical IF-
tethering function. They are found in five plakin proteins, each of
which has a unique and important role in the development and
maintenance of tissues that undergo mechanical stress. The
periplakin linker forms an elongated bilobed domain that frames
an electropositive groove that represents the functional epicentre
of the domain (Fig. 1). The three dimensional structures of the
coiled-coil rod domains of vimentin and keratin IFs have been
determined and these reveal multiple acidic patches along their
cylindrical surfaces33–35. Studies of mutations in the vimentinROD

fragment and the periplakin linker module indicate that the linker
domain accommodates cylindrical IF ligands through electro-
static interactions. This mechanism is reminiscent of the mode by
which PRDs interact with IFs3. While PRDs are larger than linker
domains encompassing 4.5 PR motifs rather than the pair of PR-
like sequences found in linkers, they also offer a distinct positively
charged groove. Nevertheless the linker’s IF recognition
mechanism resembles that of the PRD groove which accom-
modates cylindrical IF ligands through electrostatic attraction.
Charge reversal substitutions in the periplakin and desmoplakin
linkers compromise their targeting and co-localisation with
vimentin IFs (Figs. 1 and 3), mirroring the effects of mutations in
the envoplakin PRD groove that compromise targeting and co-
localisation of its assembly with vimentin3. Similarly charge
reversal mutations in the vimentinROD abolish periplakin linker
binding in a comparable way to how they abrogate envoplakin
PRD binding to vimentin3. Hence a holistic mechanism is
emerging in which proximal linker and PRD domains both
employ electrostatic attraction mediated by their respective basic
grooves to provide the avidity needed for stable IF tethering. Our
experiments show that vimentin residues D176 and E187 which
emanate from coil 1B are vital for the interaction with the peri-
plakin linker module (Fig. 6). There may be some variation in
residues required for binding other IF proteins as residue D176 is
conserved in desmin and keratins but E187 is not (Supplementary
Fig. 2). In previous work we demonstrated the importance of
vimentin residues D112 and D119, protruding from coil 1A,
for binding to envoplakin PRD3. Hence, there is a distinct pos-
sibility that the binding of the periplakin linker and envoplakin
PRD to vimentin is not mutually exclusive and the contribution
of both may be required for strong attachment of the
periplakin–envoplakin heterodimer to the IF cytoskeleton.

Interestingly, the periplakin linker appears to show stronger
binding to vimentin than does the desmoplakin linker (Figs. 2a
and 5b), although it is not as strong as that of the envoplakin PRD
(KD= 19.1 µM)3. Both linkers contain similar numbers of posi-
tively charged residues in their groove areas (Figs. 1 and 3) so this
is not simply a matter of basic character and forces other than
electrostatic interactions, including steric fit and hydrophobic
interactions, may also be in play. Increasing the basic character of
the desmoplakin linker groove does enhance its affinity for the
vimentinROD, although not to the level of the wild-type periplakin
linker (Fig. 2a and 5b), indicating that charge is important but
insufficient for tight interactions. We speculate that evolutionary
pressure on periplakin has led to the development of high binding
affinity of its linker for vimentin, enabling it to bind IFs in tissues
where its heterodimerisation partner envoplakin is not expressed.
Loss of this affinity would render periplakin entirely dependent
upon heterodimerisation with envoplakin for IF binding. By
contrast evolutionary pressure to retain desmoplakin linker
binding may not be as strong as the desmoplakin tail encom-
passes three PRDs, each of which is capable of binding IFs. In
desmoplakin the role of the linker may be to provide proper
geometric positioning of the two flanking PRDs. Delineation of

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0810-y ARTICLE

COMMUNICATIONS BIOLOGY |            (2020) 3:83 | https://doi.org/10.1038/s42003-020-0810-y | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


multivalent binding modes requires further analysis, but could
involve sliding of binding grooves along filaments to secure
adaptive attachments.

The clinical effects of desmosomal protein mutations can now be
interpreted in light of the linker mechanism. Deletion of two resi-
dues within the desmoplakin linker domain (C2501 and E2502)
results in ARVC28. These non-positively charged residues protrude
from the central groove and are located in an equivalent position to
the periplakin linker region 1694 DWEEI 1699, which is critical for
IF targeting22. Loss of desmoplakin residues C2501 and E2502
result in subtle rearrangements in the positively charged groove
(Fig. 4d) and partial co-localisation with vimentin (Fig. 3b). Thus it
appears that even minor changes in the groove affect IF co-locali-
sation, albeit not to a dramatic extent. We recognise that we are

measuring co-localisation with vimentin IFs in our experiments,
whereas in cardiomyocytes desmoplakin interacts with desmin IFs.
However, given the high degree of similarity between these two IF
proteins it is likely that the mechanism by which the desmoplakin
linker domain binds desmin IFs is similar to that by which it
engages vimentin IFs, i.e. via electrostatic interactions between
positively charged residues in the linker domain groove and nega-
tively charged side chains on IF rods.

In summary, our results provide a mechanistic basis for
understanding of plakin protein linker domain-IF interactions.
Linker domains interact with IFs via electrostatic interactions
with IF rods slotting into electropositive grooves. The role of
plakin proteins in cell-cell and cell-matrix adhesion, and other
cell biological processes such as cell migration, can now be more
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these fits to be 200 ± 29 (wild-type vimentinROD) and 23 ± 4 µM (D176K mutant vimentinROD). Wild-type periplakin linker showed no binding to D176K
vimentinROD (this data from Fig. 6c is added for comparison).
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precisely probed and the effects of linker domain mutations in
disease can be rationalised. For example, sequencing of malignant
melanomas has identified 5 somatic mutations in desmoplakin
linker residue R2465 (R2465K)36. This N-terminal residue is
highly conserved among plakin family members (except peri-
plakin) and is predicted to stabilise the PR2-like motif by forming
a hydrogen bonding interaction with the carboxyl group of
Q2499 which emanates from H2. Our modelling suggests this
interaction would not be preserved in the melanoma-linked
R2465K mutant, potentially resulting in a loss of linker domain
stability and IF binding. Similarly, periplakin cancer-linked
mutations including R1655W, R1656C, R1713M and R1737H
may alter the electrostatic IF binding function of its linker
domain36–38. From a structural biology perspective the aim will
now be to produce predictive models and structures of the
multivalent complexes between periplakin/envoplakin hetero-
dimers and desmoplakin homodimers, and IF proteins.

Methods
Transfection, immunofluorescence microscopy and westerns. DNA encoding
the following human protein sequences were subcloned into expression vector
pcDNA3.1(−) (Life Technologies): periplakin residues M1588–K1756 with a C-
terminal HA tag (YPYDVPDYA) and desmoplakin residues T1960–A2822 with a
C-terminal Flag tag (DYKDDDDK) (Supplementary Fig. 3a) (Supplementary
Table 5). Mutant periplakin and DSPs were produced using the QuikChange
Lightening site directed mutagenesis kit (Agilent Technologies). Mycoplasma-free
HeLa cells were obtained from Cancer Research UK (London Research Institute)
and routinely cultured in Dulbecco’s modified Eagle’s medium supplemented with
10% foetal calf serum, penicillin (50 U/ml) and streptomycin (50 µg/ml). Cells were
passaged by treatment with trypsin/EDTA. Constructs were transfected into cul-
tured cells using GeneJammer transfection reagent (Agilent Technologies)
according to the manufacturer’s protocol. For immunofluorescence microscopy
cells were grown on glass coverslips in complete media for 24–36 h prior to
transfection. At 48 h following transfection cells were fixed for 10 min in 4%
paraformaldehyde and permeabilised for 2 min with 0.1% Triton X-100. Cells were
co-stained with either anti-HA (Cell Signalling, catalogue number sc-7392, 1000-
fold dilution) or anti-Flag (Sigma-Aldrich, F1804, 1000-fold) and anti-vimentin
(Cell Signalling, 3932, 50-fold) antibodies, followed by the appropriate AlexaFluor-
conjugated secondary antibodies (Invitrogen, A-11019 and A-11070, 1000-fold).
Coverslips were mounted onto microscope slides using SlowFade Gold antifade
reagent (Life Technologies). Images were taken using Zeiss LSM510 META con-
focal system with ×63 oil immersion objective (NA 1.4). Co-localisation of plakin
constructs and vimentin was quantified using the JACoP plugin from ImageJ
(Rasband, WS, ImageJ, National Institutes of Health, USA; https://imagej.nih.gov/ij).
A set of commonly used co-localisation indicators was examined by visual
inspection of the staining using the decision tree proposed by the JACoP devel-
opers39. Manders’ coefficient was chosen as the most appropriate method because
it measures the fraction of pixels with positive values in two channels regardless of
signal levels. This is important because the expression of transiently transfected
proteins, and hence the signal in one channel may vary between images. For
western blotting transfected cells were lysed in sodium dodecyl sulfate (SDS)
sample buffer, resolved by SDS-polyacrylamide gel electrophoresis and transferred
to Hybond-LFP polyvinylidene difluoride membrane. Blots were probed with anti-
HA (Cell Signalling, sc-805, 500-fold), anti-Flag (Sigma-Aldrich, F7425, 3000-fold)
and anti-actin (Sigma-Aldrich, A5441, 20,000-fold) antibodies, followed by the
appropriate HRP-conjugated secondary antibodies (Dako, P0448 and P0447, 1000-
fold).

Purification of periplakin and desmoplakin linker domains. DNA encoding the
linker domains of human periplakin (residues K1646–K1756) or desmoplakin
(residues Q2454–N2565) were cloned in-frame with glutathione S-transferase
(GST) in expression vector pGEX-6P-1 (GE Healthcare) (Supplementary Table 5).
Linker domain mutants were produced using the QuikChange Lightening site-
directed mutagenesis kit (Agilent). Constructs were expressed in E. coli strain BL21
(DE3). Bacterial cultures were grown in LB media or minimal medium supple-
mented with 15NH4Cl for NMR studies. Cultures were grown at 37 °C until the
absorbance at 600 nm had reached 0.6, the temperature was then lowered to 18 °C,
expression was induced with 1 mM isopropyl-β-D-thiogalactopyranoside and the
cultures were grown for a further 18 h. Cells were harvested by centrifugation and
resuspended in 100 mM NaCl, 20 mM sodium phosphate (pH 7.4) with protease
inhibitors (Roche). Cells were lysed with an Emulsiflex system (Avestin) and the
lysates cleared by centrifugation and filtered. GST-fused proteins were purified by
glutathione affinity chromatography. Briefly, cell lysates were loaded onto 5 ml
GSTrap HP columns (GE Healthcare), columns were washed with 150 mM NaCl,
20 mM sodium phosphate (pH 7.4) and fusion proteins eluted with 30 mM glu-
tathione, 250 mM NaCl, 200 mM Tris-Cl (pH 8.0). Fusion proteins were then

incubated overnight at 4 °C with PreScission protease (GE Healthcare), the cleaved
GST removed by binding to GSTrap columns and linker proteins further purified
by size exclusion chromatography using Superdex S75 columns pre-equilibrated
with 100 mM NaCl, 20 mM sodium phosphate (pH 7.2) for NMR samples or
150 mM NaCl, 20 mM HEPES (pH 7.5) for binding studies. Proteins were kept at
4 °C or glycerol was added to 20% and the proteins stored at −80 °C.

Purification of vimentinROD and vimentinFL proteins. Human vimentinROD

(residues T99–I249 with a non-cleavable His tag) and full-length vimentin (resi-
dues M1–E466) proteins were expressed in bacteria and purified as described3.
VimentinROD mutants were produced using the QuikChange Lightening site-
directed mutagenesis kit (Agilent). VimentinROD proteins were examined by
proton NMR to ensure that the proteins were properly folded and similar in
structure (Supplementary Fig. 11). Proteins were exchanged into 20 mM phosphate
buffer, pH 7.0 containing 10% D2O and 0.02 mM 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS) as an internal chemical shift reference. Protein concentration
was adjusted to 200 or 500 μM and 200 μl samples were transferred to 3 mm NMR
tubes. The NMR spectra for the protein and mutants were collected at 25 °C using a
Varian Unity INOVA 600-MHz spectrometer. All spectra were collected with 64
steady-state scans, an acquisition time of 2 s, a 90° proton pulse of ~12.2 μs, and the
number of acquired scans was 384 per free induction decay. The data were apo-
dized with an exponential window function corresponding to a line broadening of
0.3 Hz, Fourier-transformed, phased and baseline-corrected for comparison.

MST analysis of linker–vimentin binding. Purified vimentinROD protein was
labelled using the Monolith NT His-Tag Labelling Kit RED-tris-NTA (Nano-
Temper Technologies) to produce 100 nM NT647 fluorescent dye-labelled target in
150 mM NaCl, 20 mM HEPES (pH 7.5) with 0.015 % Tween 20. Linker proteins
were exchanged into the same buffer using PD MiniTrap G-25 gravity columns
(GE Healthcare) and concentrated to generate a series of twofold dilutions with
concentrations ranging from 1.6 mM to 1.56 μM. Each ligand dilution was mixed
with an equal volume of labelled vimentinROD leading to a final concentration of
50 nM vimentinROD and final linker concentrations ranging from 800 μM to
780 nM. A maximum concentration of 800 μM linker protein was used to prevent
non-specific interactions. After incubation for 10 min at room temperature, the
samples were loaded into standard capillaries (NanoTemper Technologies) and
MST data was collected at 25 °C, 40% LED power and medium MST power. No
sign of adsorption or aggregation were found in any of the data traces. To test the
effect of salt on linker protein-vimentinROD interactions binding experiments were
performed in 150 mM NaCl (as above), 50 mM NaCl and 10 mM NaCl.

NMR analysis of linker–vimentin binding. All samples contained 100 µM
15N-labelled wild-type and mutant periplakin and desmoplakin linker proteins in
20 mM Tris-Cl, (pH 7.0) and 1 mM DTT. Heteronuclear single quantum coherence
spectra were recorded at 298 K on a Varian INOVA 600MHz spectrometer
equipped with a triple resonance cryogenically cooled probe. Binding to vimentin
was measured by following the changes in peak intensity of the 15N-labelled linker
proteins upon addition of unlabelled vimentinFL to final concentrations of 10, 50,
100 and 200 µM.

NMR assignment of the desmoplakin linker. Samples of 15N, 13C-labelled des-
moplakin linker proteins (100–500 µM) were prepared in 20 mM Hepes (pH 7.5),
50 mM NaCl, 10% D2O. All experiments were performed on a 600MHz Varian
Inova spectrometer equipped with a cryogenically cooled triple resonance probe at
298 K. Backbone resonances were assigned using BEST versions of the HNCO,
HNCACO, HNCA, HNCOCA, HNCACB and HNCOCACB40 using an interscan
delay of 300 ms. All experiments were acquired collecting 420 data points in the
direct dimension with a sweep width of 11.2 ppm and 32 increments in the 15N
dimension with a sweep width of 30 ppm. The HNCO and HNCACO experiments
were acquired using 8 scans and 48 increments in the CO dimension with a sweep
width of 16 ppm. The HNCA and HNCOCA were acquired using 16 scans and 64
increments in the CA dimension with a sweep width of 30 ppm. The HNCACB and
HNCOCACB were acquired using 16 scans and 64 increments in the CA
dimension with a sweep width of 80 ppm. Spectra were processed using
NMRPipe41 and analysis was performed using Sparky (Goddard TD and Kneller
DG, SPARKY 3, University of California, San Francisco) and CCPN Analysis42.

Far ultraviolet circular dichroism spectroscopy. CD spectra were measured on a
Chirascan CD spectrometer (Applied Photophysics) using a 1 cm path length
cuvette and a scanned wavelength range of 200–250 nm with sampling points every
1 nm. Data were processed using an Applied Photophysics Chirascan viewer and
Microsoft Excel.

Modelling the periplakin linker–vimentin complex. The interaction between the
periplakin linker domain and vimentin was modelled with HADDOCK32. Peri-
plakin residues were classified as active in vimentin binding based upon the results
of co-localisation and binding experiments. ‘Passively involved’ residues were
selected automatically. To generate representative structural models molecular
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docking experiments were carried out with available vimentin fragment structures
encompassing the entire central rod domain of vimentin. These included PDB
entries 3G1E (residues N102–L138), 3S4R (T99–L189), 3SWK (E153–H238), 3UF1
(L146–I249) and 3KLT (D264–K334). Vimentin residues contacted by the linker
were predicted from conservation of sequence motifs, negative charge and surface
exposure. Vimentin residues selected for use as ambiguous interaction restraints to
drive the docking process are listed in Supplementary Table 3.

Structural modelling of linker domains. The structures of periplakin linker
(residues K1646–K1756), desmoplakin linker (residues Q2454–N2565), desmo-
plakin linker C2501-E2502del (residues Q2454–N2565 with C2501 and E2502
omitted) and plectin linker (residues K4266–A4377) domains were generated using
the I-TASSER (Iterative Threading ASSEmbly Refinement) server43. Briefly, the
target sequences were initially threaded through the Protein Data Bank (PDB)
library by the meta threading server, LOMETS2. Continuous fragments were
excised from LOMETS2 alignments and structurally reassembled by replica-
exchange Monte Carlo simulations. The simulation trajectories were then clustered
and used as the preliminary state for second round I-TASSER assembly simula-
tions. Finally, lowest energy structural models were selected and refined by
fragment-guided molecular dynamic simulations to optimise hydrogen-bonding
interactions and remove steric clashes. Models were ranked based on their I-
TASSER confidence (C) score (range −5 to +2 with a higher score correlating with
an improved model).

Statistics and reproducibility. For quantification of immunofluorescent micro-
scopy at least five fields were examined for each experiment, with each field con-
taining two to four transfected cells. z-stacks (slice thickness 0.7 µm) were taken for
each field and overlap coefficients calculated for each individual z-stack. An
average overlap coefficient was then calculated for each experiment and each
experiment was repeated two to three times. Unpaired t tests with Welch’s cor-
rection was performed on the data. For MST binding studies data from three to six
independent experiments were analysed (MO.Affinity Analysis, NanoTemper
Technologies) and the results plotted and fit to a one-ligand binding model with
SigmaPlot (Systat Software).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are either available within the paper (and
its Supplementary information files) or are available from the corresponding author upon
reasonable request.
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