124 research outputs found

    Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites

    Get PDF
    The topotactic phase transition in SrCoOx (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoOx is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions

    A Real Space Description of Field Induced Melting in the Charge Ordered Manganites: II. the Disordered Case

    Full text link
    We study the effect of A site disorder on magnetic field induced melting of charge order (CO) in half doped manganites using a Monte-Carlo technique. Strong A-site disorder destroys CO even without an applied field. At moderate disorder, the zero field CO state survives but has several intriguing features in its field response. Our spatially resolved results track the broadening of the field melting transition due to disorder and explain the unusual dependence of the melting scales on bandwidth and disorder. In combination with our companion paper on field melting of charge order in clean systems we provide an unified understanding of CO melting across all half doped manganites.Comment: 9 pages, pdflatex, 10 embedded png fig

    The role of hospital service quality in developing the satisfaction of the patients and hospital performance

    Get PDF
    This paper aimed to examine a conceptual model for the relationships between hospital service quality, patient satisfaction, hospital utilization, and hospital financial performance. A total of 176 hospitals was selected from California State for this study. The standardized performance measures were used together with precisely defined specifications and standardized data collection protocols. First, an exploratory factor analysis with Varimax rotation was performed. The measurement prop-erties were then assessed in a confirmatory factor analysis (CFA). The analysis results show that quality had a significant effect on satisfaction, which, in turn, affected the financial performance. The results provide support for the previous findings indicated that service quality was positively associated with patient satisfaction and that satisfaction and utilization had a significant positive effect on financial performance. The analysis results provide support for the previous findings that hospital service quality is positively related to patient satisfaction. The findings also show that patient satisfaction and hospital utilization have a significant positive effect on hospital financial performance

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig
    corecore