1 research outputs found

    First-Principles Computational Screening of Highly Active Pyrites Catalysts for Hydrogen Evolution Reaction through a Universal Relation with a Thermodynamic Variable

    No full text
    Hydrogen gas has been regarded as a promising fuel for securing energy and environmental sustainability of our society. Accordingly, efficient and large scale production of hydrogen is central issue due to high activation barrier unless costly transition metal catalysts are used. Here, we screen optimum catalysts toward hydrogen evolution among cheap pyrites using first-principles density functional theory calculations and rigorous thermodynamic approach. A key thermodynamic state variable accurately describes the catalytic activity, of which the mechanism is unveiled by a universal linear correlation between kinetic exchange current density in hydrogen evolution reaction and thermodynamic adsorption energy of hydrogen atom over various pyrites. On the basis of the results, we propose a design principle for substantial tuning the catalytic performance
    corecore