169 research outputs found
Experimental observation of the X-shaped near field spatio-temporal correlation of ultra-broadband twin beams
In this work we present the experimental observation of the non factorable
near field spatio-temporal correlation of ultra-broadband twin beams generated
by parametric down conversion (PDC), in an interferometric-type experiment
using sum frequency generation, where both the temporal and spatial degrees of
freedom of PDC light are controlled with very high resolution. The revealed
X-structure of the correlation is in accordance with the predictions of the
theory.Comment: 5 pages, 3 figure
Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera
We consider travelling-wave parametric down-conversion in the high-gain
regime and present the experimental demonstration of the quantum character of
the spatial fluctuations in the system. In addition to showing the presence of
sub-shot noise fluctuations in the intensity difference, we demonstrate that
the peak value of the normalized spatial correlations between signal and idler
lies well above the line marking the boundary between the classical and the
quantum domain. This effect is equivalent to the apparent violation of the
Cauchy-Schwartz inequality, predicted by some of us years ago, which represents
a spatial analogue of photon antibunching in time. Finally, we analyse
numerically the transition from the quantum to the classical regime when the
gain is increased and we emphasize the role of the inaccuracy in the
determination of the symmetry center of the signal/idler pattern in the
far-field plane.Comment: 21 pages, 11 figures, submitted to J. Mod. Opt. special issue on
Quantum Imagin
Detection of the ultranarrow temporal correlation of twin beams via sum-frequency generation
We demonstrate the ultranarrow temporal correlation (6 fs full width half
maximum) of twin beams generated by parametric down-conversion, by using the
inverse process of sum-frequency generation. The result relies on an achromatic
imaging of a huge bandwith of twin beams and on a careful control of their
spatial degrees of freedom. The detrimental effects of spatial filtering and of
imperfect imaging are shown toghether with the theoretical model used to
describe the results
Coherence properties of high-gain twin beams generated in pump-depletion regime
Twin-beam coherence properties are analyzed both in the spatial and spectral
domains at high-gain regime including pump depletion. The increase of the size
of intensity auto- and cross-correlation areas at increasing pump power is
replaced by a decrease in the pump depletion regime. This effect is interpreted
as a progressive loss in the mode selection occurring at high-gain
amplification. The experimental determination of the number of spatio-spectral
modes from -function measurements confirms this explanation.Comment: 7 pages, 7 figure
Emergence of X-shaped spatiotemporal coherence in optical waves
Considering the problem of parametric nonlinear interaction, we report the experimental observation of electromagnetic waves characterized by an X-shaped spatiotemporal coherence; i.e., coherence is neither spatial nor temporal, but skewed along specific spatiotemporal trajectories. The application of the usual, purely spatial or temporal, measures of coherence would erroneously lead to the conclusion that the field is fully incoherent. Such hidden coherence has been identified owing to an innovative diagnostic technique based on simultaneous analysis of both the spatial and temporal spectra
High-sensitivity imaging with multi-mode twin beams
Twin entangled beams produced by single-pass parametric down-conversion (PDC)
offer the opportunity to detect weak amount of absorption with an improved
sensitivity with respect to standard techniques which make use of classical
light sources. We propose a differential measurement scheme which exploits the
spatial quantum correlation of type II PDC to image a weak amplitude object
with a sensitivity beyond the standard quantum limit imposed by shot-noise.Comment: 13 pages, 8 figure
Noise-seeded spatiotemporal modulation instability in normal dispersion
6In optical second-harmonic generation with normal dispersion, the virtually infinite bandwidth of the unbounded, hyperbolic, modulational instability leads to quenching of spatial multisoliton formation and to the occurrence of a catastrophic spatiotemporal breakup when an extended beam is left to interact with an extremely weak external noise with a coherence time much shorter than that of the pump.openD. Salerno; O. Jedrkiewicz; J. Trull; G. Valiulis; A. Picozzi; P. Di TrapaniSalerno, Domenico; Jedrkiewicz, Ottavia; J., Trull; G., Valiulis; A., Picozzi; DI TRAPANI, Paol
- …
