80 research outputs found

    Limited influence of experimentally induced predation risk on granivory in a tropical forest

    Get PDF
    Seed predation by rodents can strongly influence plant recruitment and establishment. The extent to which predation risk indirectly alters plant survival in tropical forests via impacts on granivory is unclear, making it difficult to assess the cascading impacts of widespread predator loss on tree recruitment and species composition. Experimental field studies that manipulate predation risk can help address these knowledge gaps and reveal whether antipredator responses among small mammals influence plant survival. We used camera traps and seed predation experiments to test the effects of perceived predation risk (via predator urine gel) on foraging behaviour of and seed removal by murid rodents in an unlogged and unhunched rainforest in Malaysian Borneo. We also explored the influence of seed traits (e.g., seed size) on removal by granivores and assessed whether granivore preferences for particular species were affected by predator urine. Murid visits to seed plots were positively related to overall seed removal but were not affected by predator scent. Granivory was the lowest for the largest seeded (>6 g) plant in our study but was not influenced by predation risk. Predator urine significantly affected removal of one seed taxon (Dimoocarpus, ∼0.8 g), suggesting that removal by granivores may be affected by predation risk for some seed species but not others. This could have implications for plant species composition but may not affect the overall level of granivory

    Sarawak Wildlife Corridors

    Get PDF

    How individual links affect network stability in a large-scale, heterogeneous metacommunity

    Get PDF
    Elucidating how dispersal and landscape connectivity influence metacommunity stability will shed light on natural processes structuring ecosystems and help prioritize conservation actions in an increasingly fragmented world. Much of the theoretical and mathematical development of the metacommunity concept has been based on simplified experimental systems or simulated data. We still have limited understanding of how variation in the habitat matrix and species-specific differences in dispersal ability contribute to metacommunity dynamics in heterogeneous landscapes. We model a metacommunity of rainforest mammals in Borneo, a tropical biodiversity hotspot, where protected areas are increasingly isolated by ongoing habitat disturbance and loss. We employ a combination of hierarchical models of local abundance, circuit-theory-based dispersal analysis, and metapopulation models. Our goal was to understand which landscape links were the most important to metapopulation persistence and metacommunity stability. Links were particularly important if they were short and connected two large patches. This was partly because only the very shortest links could be traversed by poorly dispersing species, including small herbivores such as chevrotains (Tragulus spp.) and porcupines. Links that join large patches into a “super-patch” may also promote island–mainland rather than Levins-type metapopulation dynamics for good dispersers, particularly large carnivores such as clouded leopards (Neofelis diardi) and sun bears (Helarctos malayanus), reducing metapopulation extinction risk and thereby enhancing metacommunity stability. Link importance to metacommunity stability was highly correlated between heterogeneous and homogeneous landscapes. But link importance to metapopulation capacity varied strongly across species, and the correlation between heterogeneous and homogeneous landscape matrix scenarios was low for poorly dispersing taxa. This suggests that the environmental conditions in the area between habitat patches, the landscape matrix, is important for assessing certain individual species but less so for understanding the stability of the entire metacommunity

    Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree.

    Get PDF
    Abstract. Myriad tropical vertebrates are threatened by overharvest. Whether this harvest has indirect effects on nonhunted organisms that interact with the game species is a critical question. Many tropical birds and mammals disperse seeds. Their overhunting in forests can cause zoochorous trees to suffer from reduced seed dispersal. Yet how these reductions in seed dispersal influence tree abundance and population dynamics remains unclear. Reproductive parameters in long-lived organisms often have very low elasticities; indeed the demographic importance of seed dispersal is an open question. We asked how variation in hunting pressure across four national parks with seasonal forest in northern Thailand influenced the relative abundance of gibbons, muntjac deer, and sambar deer, the sole dispersers of seeds of the canopy tree Choerospondias axillaris. We quantified how variation in disperser numbers affected C. axillaris seed dispersal and seedling abundance across the four parks. We then used these data in a structured population model based on vital rates measured in Khao Yai National Park (where poaching pressure is minimal) to explore how variation in illegal hunting pressure might influence C. axillaris population growth and persistence. Densities of the mammals varied strongly across the parks, from relatively high in Khao Yai to essentially zero in Doi Suthep-Pui. Levels of C. axillaris seed dispersal and seedling abundance positively tracked mammal density. If hunting in Khao Yai were to increase to the levels seen in the other parks, C. axillaris population growth rate would decline, but only slightly. Extinction of C. axillaris is a real possibility, but may take many decades. Recent and ongoing extirpations of vertebrates in many tropical forests could be creating an extinction debt for zoochorous trees whose vulnerability is belied by their current abundance

    Bornean felids in and around the Imbak Canyon conservation area, Sabah, Malaysia

    Get PDF
    We photo-captured three of the five species of Bornean felids in and around the Imbak Canyon Conservation Area in central Sabah, Malaysian Borneo - the Sunda clouded leopard Neofelis diardi, marbled cat Pardofelis marmorata and leopard cat Prionailurus bengalensis. The Sunda clouded leopard was the most frequently photographed felid (11 photos), followed by marbled cat and leopard cat (2 photos each). The Sunda clouded leopard and marbled cat are classified as Vulnerable on the IUCN/SSC Red List of Threatened Species, whereas the leopard cat is a species of Least Concern (IUCN 2012). All three species were detected within primary and logged forest habitats. These findings may indicate that, in addition to primary forests, regenerating secondary forests are important to felids conservation

    Direct comparisons of logging and agroforestry influence on tropical mammals in Sarawak, Borneo

    Get PDF
    Tropical regions are undergoing rapid land use change, with major implications for global biodiversity. Selective logging and agroforestry are particularly widespread across tropical forests, often occurring in close proximity. But while a number of studies have addressed their impacts separately, few have directly compared how they influence forest vertebrates. Here, we assessed the occurrence of medium- to large-bodied mammals in logged forest, unlogged forest, and agroforestry areas in three study areas in interior Sarawak, Malaysian Borneo. We detected 34 species across 99 camera trap locations and used multi-species occupancy models to estimate species-specific occurrence while accounting for imperfect detectability, spatial autocorrelation, natural habitat heterogeneity, and metrics of site accessibility (distance to human infrastructure) as proxies for potential hunting pressure. We found that species occurrences were unaffected by the distance to the nearest road or village and only responded to elevation and the distance to the nearest river in a single species each. Detection rates tended to vary with micro-habitat characteristics such as the size of tree stumps and the prevalence of trees and rattan palms, which are often not considered in camera-based occupancy studies. Occurrence rates of five species varied across habitat types but were not detectably lower in agroforestry sites than in unlogged forest for any species. Our results indicate that without unsustainable hunting, agroforestry and logged forest provide usable habitat for some, though not all, rainforest mammals. We also suggest that camera trap studies may benefit from the incorporation of fine-scale habitat information into detectability estimation

    The changing landscape of conservation science funding in the United States

    Get PDF
    To understand the changing role of funding sources in shaping conservation science in the United States, we analyzed acknowledgments from published studies, trends in research funding, and survey responses from conservation scientists. Although the U.S. federal government was the most frequently acknowledged source of support overall, U.S. foundations and NGOs were the predominant sources for tropical and socioeconomic research. Acknowledgments of foundation support for conservation research increased over the last two decades, while recognition of federal funds declined. Concordant trends in funding and acknowledgments indicated a changing landscape for conservation science, in which federal support has not kept pace with the growth in conservation research efforts or needs. Survey responses from conservation scientists about their funding sources were consistent with acknowledgment data, and most (64%) indicated that shifts in funding sources and amounts affected the type of research they conduct. Ongoing changes in the funding landscape shape the direction of conservation research and may make conservation science more vulnerable to economic recessions

    Models for assessing local-scale co-abundance of animal species while accounting for differential detectability and varied responses to the environment

    Get PDF
    We developed a new modeling framework to assess how the local abundance of one species influences the local abundance of a potential competitor while explicitly accounting for differential responses to environmental conditions. Our models also incorporate imperfect detection as well as abundance estimation error for both species. As a case study, we applied the model to four pairs of mammal species in Borneo, surveyed by extensive and spatially widespread camera trapping. We detected different responses to elevation gradients within civet, macaque, and muntjac deer species pairs. Muntjac and porcupine species varied in their response to terrain ruggedness, and the two muntjac responded different to river proximity. Bornean endemic species of civet and muntjac were more sensitive than their widespread counterparts to habitat disturbance (selective logging). Local abundance within several species pairs was positively correlated, but this is likely due to the species having similar responses to (unmodeled) environmental conditions or resources rather than representing facilitation. After accounting for environment and correcting for false absences in detection, negative correlations in local abundance appear rare in tropical mammals. Direct competition may be weak in these species, possibly because the ‘ghost of competition past’ or habitat filtering have already driven separation of the species in niche space. The analytical framework presented here could increase basic understanding of how ecological interactions shape patterns of abundance across the landscape for a range of taxa, and also provide a powerful tool for forecasting the impacts of global change. © 2017 The Association for Tropical Biology and Conservatio

    Evaluating multispecies landscape connectivity in a threatened tropical mammal community

    Get PDF
    Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single-species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade-offs between single- and multispecies corridor approaches. We assessed single-species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species’ local abundance as estimated through hierarchical modeling of camera-trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig-tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all-species-combined connectivity scenario with least-cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all-species-combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance-sensitive species to maximize their effectiveness
    corecore