49 research outputs found

    Reply to the Comment by Sandvik, Sengupta, and Campbell on ``Ground State Phase Diagram of a Half-Filled One-Dimensional Extended Hubbard Model''

    Full text link
    In their Comment (see cond-mat/0301237), Sandvik, Sengupta, and Campbell present some numerical evidences to support the existence of an extended bond-order-wave (BOW) phase at couplings (U,V) weaker than a tricritical point (U_t,V_t) in the ground state phase diagram of the one-dimensional half-filled U-V Hubbard model. They claim that their results do not agree with the phase diagram proposed in my Letter (cond-mat/0204244), which shows a BOW phase for couplings stronger than the critical point only. However, I argue here that their results are not conclusive and do not refute the phase diagram described in the Letter.Comment: 1 page, published versio

    Correlations and confinement of excitations in an asymmetric Hubbard ladder

    Full text link
    Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on both legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder

    Correlated atomic wires on substrates. II. Application to Hubbard wires

    Full text link
    In the first part of our theoretical study of correlated atomic wires on substrates, we introduced lattice models for a one-dimensional quantum wire on a three-dimensional substrate and their approximation by quasi-one-dimensional effective ladder models [arXiv:1704.07350]. In this second part, we apply this approach to the case of a correlated wire with a Hubbard-type electron-electron repulsion deposited on an insulating substrate. The ground-state and spectral properties are investigated numerically using the density-matrix renormalization group method and quantum Monte Carlo simulations. As a function of the model parameters, we observe various phases with quasi-one-dimensional low-energy excitations localized in the wire, namely paramagnetic Mott insulators, Luttinger liquids, and spin-1/21/2 Heisenberg chains. The validity of the effective ladder models is assessed by studying the convergence with the number of legs and comparing to the full three-dimensional model. We find that narrow ladder models accurately reproduce the quasi-one-dimensional excitations of the full three-dimensional model but predict only qualitatively whether excitations are localized around the wire or delocalized in the three-dimensional substrate
    corecore