9 research outputs found
From moral hazard to risk-response feedback
The Intergovernmental Panel on Climate Change assessments (IPCC) Special Report on 1.5 °C of global warming is clear. Nearly all pathways that hold global warming well below 2 °C involve carbon removal (IPCC, 2015). In addition, solar geoengineering is being considered as a potential tool to offset warming, especially to limit temperature until negative emissions technologies are sufficiently matured (MacMartin et al., 2018). Despite this, there has been a reluctance to embrace carbon removal and solar geoengineering, partly due to the perception that these technologies represent what is widely termed a âmoral hazardâ: that geoengineering will prevent people from developing the will to change their personal consumption and push for changes in infrastructure (Robock et al., 2010), erode political will for emissions cuts (Keith, 2007), or otherwise stimulate increased carbon emissions at the social-system level of analysis (Bunzl, 2008). These debates over carbon removal and geoengineering echo earlier ones over climate adaptation. We argue that debates over âmoral hazardâ in many areas of climate policy are unhelpful and misleading. We also propose an alternative framework for dealing with the tradeoffs that motivate the appeal to âmoral hazard,â which we call ârisk-response feedback.
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Development and characterization of a flux-pumped lumped element Josephson parametric amplifier
Josephson parametric amplification is a tool of paramount importance in circuit-QED especially for the quantum-noise-limited single-shot read-out of superconducting qubits. We developed a Josephson parametric amplifier (JPA) based on a lumped-element LC resonator, in which the inductance L is composed by a geometric inductance and an array of 4 superconducting quantum interference devices (SQUIDs). We characterized the main figures of merit of the device, obtaining a â3 dB bandwidth BW = 15 MHz for a gain G = 21 dB and a 1 dB compression point P1dB = â115 dBm. The obtained results are promising for the future use of such JPA as the first stage of amplification for single-shot readout of superconducting qubits
Development and characterization of a flux-pumped lumped element Josephson parametric amplifier
Josephson parametric amplification is a tool of paramount importance in circuit-QED especially for the quantum-noise-limited single-shot read-out of superconducting qubits. We developed a Josephson parametric amplifier (JPA) based on a lumped-element LC resonator, in which the inductance L is composed by a geometric inductance and an array of 4 superconducting quantum interference devices (SQUIDs). We characterized the main figures of merit of the device, obtaining a â3 dB bandwidth BW = 15 MHz for a gain G = 21 dB and a 1 dB compression point P1dB = â115 dBm. The obtained results are promising for the future use of such JPA as the first stage of amplification for single-shot readout of superconducting qubits