36 research outputs found

    Proteomic analyses of native brain KV4.2 channel complexes

    Get PDF
    Somatodendritic A-type (I(A)) voltage-gated K(+) (K(V)) channels are key regulators of neuronal excitability, functioning to control action potential waveforms, repetitive firing and the responses to synaptic inputs. Rapidly activating and inactivating somatodendritic I(A) channels are encoded by K(V)4 α subunits and accumulating evidence suggests that these channels function as components of macromolecular protein complexes. Mass spectrometry (MS)-based proteomic approaches were developed and exploited here to identify potential components and regulators of native brain K(V)4.2-encoded I(A) channel complexes. Using anti-K(V)4.2 specific antibodies, K(V)4.2 channel complexes were immunoprecipitated from adult wild type mouse brain. Parallel control experiments were performed on brain samples isolated from (K(V)4.2(−/−)) mice harboring a targeted disruption of the KCND2 (K(V)4.2) locus. Three proteomic strategies were employed: an in-gel approach, coupled to one-dimensional liquid chromatography-tandem MS (1D-LC-MS/MS), and two in-solution approaches, followed by 1D-or 2D-LC-MS/MS. The targeted in-gel 1D-LC-MS/MS analyses demonstrated the presence of the K(V)4 α subunits (K(V)4.2, K(V)4.3 and K(V)4.1) and the K(V)4 accessory, KChIP (KChIPI-4) and DPP (DPP6 and 10), proteins in native brain K(V)4.2 channel complexes. The more comprehensive, in-solution approach, coupled to 2D-LC-MS/MS, also called Multidimensional Protein Identification Technology (MudPIT), revealed that additional regulatory proteins, including the K(V) channel accessory subunit K(V)β1, are also components of native brain K(V)4.2 channel complexes. Additional biochemical and functional approaches will be required to elucidate the physiological roles of these newly identified K(V)4 interacting proteins

    The sodium channel accessory subunit Navβ1 regulates neuronal excitability through modulation of repolarizing voltage-gated K+ channels

    Get PDF
    The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (I(A)) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting and cell surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na(+) channel accessory subunit Navβ1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navβ1 decreases I(A) densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b null cortical pyramidal neurons lacking Navβ1. Biochemical and voltage-clamp experiments further demonstrated that Navβ1 interacts with and increases the stability of heterologously expressed Kv4.2 protein, resulting in greater total and cell surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Taken together, the results presented here identify Navβ1 as a component of native neuronal Kv4.2-encoded I(A) channel complexes and a novel regulator of I(A) channel densities and neuronal excitability

    A systematic investigation of PET Radionuclide Specific Activity on Miniaturization of Radiochemistry

    No full text
    The PET radionuclides, 18F and 11C consist of very high radiation to mass amounts and should be easily adapted to new technologies such as âÂÂchip chemistryâ with nanofluidics. However, environmental contamination with nonradioactive fluorine, carbon and other trace contaminants add sufficient mass, micrograms to milligrams, to prevent adapting PET radiochemistry to the nanochip technologies. In addition, the large volumes of material required for beam irradiation make it necessary to also remove the 18F and 11C from their chemical matrices. These steps add contaminants. The work described in this report was a systematic investigation of sources of these contaminants and methods to reduce these contaminants and the reaction volumes for radiochemical synthesis. Several methods were found to lower the contaminants and matrices to within a factor of 2 to 100 of those needed to fully implement chip technology but further improvements are needed

    Glioma FMISO PET/MR Imaging Concurrent with Antiangiogenic Therapy: Molecular Imaging as a Clinical Tool in the Burgeoning Era of Personalized Medicine

    Get PDF
    The purpose of this article is to provide a focused overview of the current use of positron emission tomography (PET) molecular imaging in the burgeoning era of personalized medicine in the treatment of patients with glioma. Specifically, we demonstrate the utility of PET imaging as a tool for personalized diagnosis and therapy by highlighting a case series of four patients with recurrent high grade glioma who underwent 18F-fluoromisonidazole (FMISO) PET/MR (magnetic resonance) imaging through the course of antiangiogenic therapy. Three distinct features were observed from this small cohort of patients. First, the presence of pseudoprogression was retrospectively associated with the absence of hypoxia. Second, a subgroup of patients with recurrent high grade glioma undergoing bevacizumab therapy demonstrated disease progression characterized by an enlarging nonenhancing mass with newly developed reduced diffusion, lack of hypoxia, and preserved cerebral blood volume. Finally, a reduction in hypoxic volume was observed concurrent with therapy in all patients with recurrent tumor, and markedly so in two patients that developed a nonenhancing reduced diffusion mass. This case series demonstrates how medical imaging has the potential to influence personalized medicine in several key aspects, especially involving molecular PET imaging for personalized diagnosis, patient specific disease prognosis, and therapeutic monitoring

    Kinetic Analysis of 2-[11C]Thymidine PET Imaging Studies of Malignant Brain Tumors: Preliminary Patient Results

    No full text
    2-[11C]Thymidine (TdR), a PET tracer for cellular proliferation, may be advantageous for monitoring brain tumor progression and response to therapy. Kinetic analysis of dynamic TdR images was performed to estimate the rate of thymidine transport (K1t) and thymidine flux (KTdR) into brain tumors and normal brain. These estimates were compared to MRI and pathologic results. Methods: Twenty patients underwent sequential [11C]CO2 (major TdR metabolite) and TdR PET studies with arterial blood sampling and metabolite analysis. The data were fitted using the five-compartment model described in the companion article. Results: Comparison of model estimates with clinical and pathologic data shows that K1t is higher for MRI contrast enhancing tumors (p > .001), and KTdR increases with tumor grade (p > .02). On average, TdR retention was lower after treatment in high-grade tumors. The model was able to distinguish between increased thymidine transport due to blood–brain barrier breakdown and increased tracer retention associated with tumor cell proliferation. Conclusion: Initial analysis of model estimates of thymidine retention and transport show good agreement with the clinical and pathological features of a wide range of brain tumors. Ongoing studies will evaluate its role in measuring response to treatment and predicting outcome

    Kinetic Analysis of 2-[ 11

    No full text
    2-[ 11 C]Thymidine (TdR), a PET tracer for cellular proliferation, may be advantageous for monitoring brain tumor progression and response to therapy. Kinetic analysis of dynamic TdR images was performed to estimate the rate of thymidine transport ( K 1t ) and thymidine flux ( K TdR ) into brain tumors and normal brain. These estimates were compared to MRI and pathologic results. Methods: Twenty patients underwent sequential [ 11 C]CO 2 (major TdR metabolite) and TdR PET studies with arterial blood sampling and metabolite analysis. The data were fitted using the five-compartment model described in the companion article. Results: Comparison of model estimates with clinical and pathologic data shows that K 1t is higher for MRI contrast enhancing tumors ( p > .001), and K TdR increases with tumor grade ( p > .02). On average, TdR retention was lower after treatment in high-grade tumors. The model was able to distinguish between increased thymidine transport due to blood–brain barrier breakdown and increased tracer retention associated with tumor cell proliferation. Conclusion: Initial analysis of model estimates of thymidine retention and transport show good agreement with the clinical and pathological features of a wide range of brain tumors. Ongoing studies will evaluate its role in measuring response to treatment and predicting outcome
    corecore