107 research outputs found

    A Call to Standardize Teratoma Assays Used to Define Human Pluripotent Cell Lines

    Get PDF
    SummaryThe teratoma assay is the gold standard for documenting pluripotency of human stem cells. However, reports of new human ESC and iPSC lines vary widely in both methods and analysis of teratoma data. We call for consensus standards to be established to make this assay worthy of its “golden” status

    Unraveling Epigenetic Regulation in Embryonic Stem Cells

    Get PDF
    Embryonic stem (ES) cells can replicate indefinitely while retaining the capacity to differentiate into functionally distinct cell types. ES cells proliferate and differentiate without detectable genetic changes, indicating that these processes are controlled by epigenetic factors. Here we describe what is known about the epigenetics of ES cells and speculate that a dynamic balance among at least three epigenetic elements (chromatin structure, DNA methylation, and microRNAs), in conjunction with transcription factors, contributes to the maintenance of pluripotence. Understanding the interactions among these factors will be critical to the development of improved strategies to reprogram differentiated cells or direct differentiation of pluripotent cells

    Transcriptome coexpression map of human embryonic stem cells

    Get PDF
    BACKGROUND: Human embryonic stem (ES) cells hold great promise for medicine and science. The transcriptome of human ES cells has been studied in detail in recent years. However, no systematic analysis has yet addressed whether gene expression in human ES cells may be regulated in chromosomal domains, and no chromosomal domains of coexpression have been identified. RESULTS: We report the first transcriptome coexpression map of the human ES cell and the earliest stage of ES differentiation, the embryoid body (EB), for the analysis of how transcriptional regulation interacts with genomic structure during ES self-renewal and differentiation. We determined the gene expression profiles from multiple ES and EB samples and identified chromosomal domains showing coexpression of adjacent genes on the genome. The coexpression domains were not random, with significant enrichment in chromosomes 8, 11, 16, 17, 19, and Y in the ES state, and 6, 11, 17, 19 and 20 in the EB state. The domains were significantly associated with Giemsa-negative bands in EB, yet showed little correlation with known cytogenetic structures in ES cells. Different patterns of coexpression were revealed by comparative transcriptome mapping between ES and EB. CONCLUSION: The findings and methods reported in this investigation advance our understanding of how genome organization affects gene expression in human ES cells and help to identify new mechanisms and pathways controlling ES self-renewal or differentiation

    Teratoma Generation in the Testis Capsule

    Get PDF
    Pluripotent stem cells (PSCs) have the unique characteristic that they can differentiate into cells from all three germ layers. This makes them a potentially valuable tool for the treatment of many different diseases. With the advent of induced pluripotent stem cells (iPSCs) and continuing research with human embryonic stem cells (hESCs) there is a need for assays that can demonstrate that a particular cell line is pluripotent. Germline transmission has been the gold standard for demonstrating the pluripotence of mouse embryonic stem cell (mESC) lines1,2,3. Using this assay, researchers can show that a mESC line can make all cell types in the embryo including germ cells4. With the generation of human ESC lines5,6, the appropriate assay to prove pluripotence of these cells was unclear since human ESCs cannot be tested for germline transmission. As a surrogate, the teratoma assay is currently used to demonstrate the pluripotency of human pluripotent stem cells (hPSCs)7,8,9. Though this assay has recently come under scrutiny and new technologies are being actively explored, the teratoma assay is the current gold standard7. In this assay, the cells in question are injected into an immune compromised mouse. If the cells are pluripotent, a teratoma will eventually develop and sections of the tumor will show tissues from all 3 germ layers10. In the teratoma assay, hPSCs can be injected into different areas of the mouse. The most common injection sites include the testis capsule, the kidney capsule, the liver; or into the leg either subcutaneously or intramuscularly11. Here we describe a robust protocol for the generation of teratomas from hPSCs using the testis capsule as the site for tumor growth

    Application of a low cost array-based technique — TAB-Array — for quantifying and mapping both 5mC and 5hmC at single base resolution in human pluripotent stem cells

    Get PDF
    Abstract5-hydroxymethylcytosine (5hmC), an oxidized derivative of 5-methylcytosine (5mC), has been implicated as an important epigenetic regulator of mammalian development. Current procedures use DNA sequencing methods to discriminate 5hmC from 5mC, limiting their accessibility to the scientific community. Here we report a method that combines TET-assisted bisulfite conversion with Illumina 450K DNA methylation arrays for a low-cost high-throughput approach that distinguishes 5hmC and 5mC signals at base resolution. Implementing this approach, termed “TAB-array”, we assessed DNA methylation dynamics in the differentiation of human pluripotent stem cells into cardiovascular progenitors and neural precursor cells. With the ability to discriminate 5mC and 5hmC, we identified a large number of novel dynamically methylated genomic regions that are implicated in the development of these lineages. The increased resolution and accuracy afforded by this approach provides a powerful means to investigate the distinct contributions of 5mC and 5hmC in human development and disease

    Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines

    Get PDF
    BACKGROUND: In order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina(® )bead arrays that contain probes for 24,131 transcript probes. RESULTS: A total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR. CONCLUSION: we show that Illumina's bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples

    Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models

    Full text link
    INTRODUCTION: Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer’s disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches. METHODS: To begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined. RESULTS: Our findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region. CONCLUSIONS: Taken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer’s disease pathology

    Neurite outgrowth and gene expression profile correlate with efficacity of human induced pluripotent stem cell-derived dopamine neuron grafts

    Get PDF
    Transplantation of human induced pluripotent stem cell-derived dopaminergic (iPSC-DA) neurons is a promising therapeutic strategy for Parkinson's disease (PD). To assess optimal cell characteristics and reproducibility, we evaluated the efficacy of iPSC-DA neuron precursors from two individuals with sporadic PD by transplantation into a hemiparkinsonian rat model after differentiation for either 18 (d18) or 25 days (d25). We found similar graft size and dopamine (DA) neuron content in both groups, but only the d18 cells resulted in recovery of motor impairments. In contrast, we report that d25 grafts survived equally as well and produced grafts rich in tyrosine hydroxylase-positive neurons, but were incapable of alleviating any motor deficits. We identified the mechanism of action as the extent of neurite outgrowth into the host brain, with d18 grafts supporting significantly more neurite outgrowth than nonfunctional d25 grafts. RNAseq analysis of the cell preparation suggests that graft efficacy may be enhanced by repression of differentiation-associated genes by REST, defining the optimal predifferentiation state for transplantation. This study demonstrates for the first time that DA neuron grafts can survive well in vivo while completely lacking the capacity to induce recovery from motor dysfunction. In contrast to other recent studies, we demonstrate that neurite outgrowth is the key factor determining graft efficacy and our gene expression profiling revealed characteristics of the cells that may predict their efficacy. These data have implication for the generation of DA neuron grafts for clinical application
    • …
    corecore