6 research outputs found

    Mannose 6-phosphate receptor targeting and its applications in human diseases.

    No full text
    International audienceThe cation-independent mannose 6-phosphate receptor is a multifunctional protein which binds at the cell surface to two distinct classes of ligands, the mannose 6-phosphate (M6P) bearing proteins and IGF-II. Its major function is to bind and transport M6P-enzymes to lysosomes, but it can also modulate the activity of a variety of extracellular M6P-glycoproteins (i.e., latent TGFbeta precursor, urokinase-type plasminogen activator receptor, Granzyme B, growth factors, Herpes virus). The purpose of this review is to highlight the synthesis and potential use of high affinity M6P analogues able to target this receptor. Several M6P analogues with phosphonate, carboxylate or malonate groups display a higher affinity and a stronger stability in human serum than M6P itself. These derivatives could be used to favour the delivery of specific therapeutic compounds to lysosomes, notably in enzyme replacement therapies of lysosomal diseases or in neoplastic drug targeting. In addition, their potential applications in preventing clinical disorders, which are associated with the activities of other M6P-proteins involved in wound healing, cell growth or viral infection, will be discussed

    Synthesis and receptor binding affinity of carboxylate analogues of the mannose 6-phosphate recognition marker.

    No full text
    The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is involved in multiple physiological pathways including targeting of lysosomal enzymes, degradation of IGF2, and cicatrization through TGFbeta activation. To target potential therapeutics to this membrane receptor, four carboxylate analogues of mannose 6-phosphate (M6P) were synthesized. Three of them, two isosteric carboxylate analogues and a malonate derivative, showed a binding affinity for the M6P/IGF2R equivalent to or higher than that of M6P. Contrary to M6P, all these analogues were particularly stable in human serum. Moreover, these derivatives did not present any cytotoxic activity against two human cell lines. These analogues represent a new potential for the lysosomal targeting of enzyme replacement therapy in lysosomal diseases or to prevent the membrane-associated activities of the M6P/IGF2R

    Synthesis of new sulfonate and phosphonate derivatives for cation-independent mannose 6-phosphate receptor targeting.

    No full text
    International audienceThe cation-independent mannose 6-phosphate receptor (CI-M6PR) is essential for the endocytosis of proteins bearing the mannose 6-phosphate (M6P) recognition marker. This study described the synthesis of M6P and M6S analogs presenting greater affinity for CI-M6PR than their natural compounds. Moreover, the finding of their lack of cytotoxicity for human cells and of their increased stability in human serum supports the high potential of these isosteric derivatives in therapies requiring CI-M6PR targeting
    corecore