14 research outputs found

    Secondary analyses of the randomized phase III Stop&Go study: efficacy of second-line intermittent versus continuous chemotherapy in HER2-negative advanced breast cancer

    Get PDF
    Background: Previously, we showed that reintroduction of the same (first-line) chemotherapy at progression could only partially make up for the loss in efficacy as compared to continuously delivered first-line chemotherapy. Here, we report the probability of starting second-line study chemotherapy in the Stop&Go trial, and the progression-free survival (PFS) and overall survival (OS) of patients who received both the first- and second-line treatment in an intermittent versus continuous schedule. Methods: First-line chemotherapy comprised paclitaxel plus bevacizumab, second-line capecitabine or non-pegylated liposomal doxorubicin, given per treatment line as two times four cycles (intermittent) or as eight consecutive cycles (continuous). Results: Of the 420 patients who started first-line treatment within the Stop&Go trial (210:210), a total of 270 patients continued on second-line study treatment (64% of all), which consisted of capecitabine in 201 patients and of non-pegylated liposomal doxorubicin in 69 patients, evenly distributed between the treatment arms. Median PFS was 3.7 versus 5.0 months (HR 1.07; 95% CI: 0.82–1.38) and median OS 10.9 versus 12.4 months (HR 1.27; 95% CI: 0.98–1.66) for intermittent versus continuous second

    The influence on quality of life of intermittent scheduling in first- and second-line chemotherapy of patients with HER2-negative advanced breast cancer

    Get PDF
    Background: The Stop&Go study randomized patients with advanced breast cancer to intermittent (two times four) or continuous (eight subsequent cycles) first- and second-line chemotherapy. Methods: QoL was measured with RAND-36 questionnaires every 12 weeks. The primary objective was to estimate differences in changes from baseline between intermittent and continuous treatment. An effect size of 0.5 SD (5 points) was considered clinically meaningful. Results: A total of 398 patients were included with a median follow-up of 11.4 months (IQR 5.6–22.2). Mean physical QoL baseline scores were 38.0 resp. 38.2, and mental scores 45.0 resp. 42.4 for intermittent and continuous treatm

    Quantifying Transmission of Campylobacter jejuni in Commercial Broiler Flocks▿ †

    Get PDF
    Since meat from poultry colonized with Campylobacter spp. is a major cause of bacterial gastroenteritis, human exposure should be reduced by, among other things, prevention of colonization of broiler flocks. To obtain more insight into possible sources of introduction of Campylobacter into broiler flocks, it is essential to estimate the moment that the first bird in a flock is colonized. If the rate of transmission within a flock were known, such an estimate could be determined from the change in the prevalence of colonized birds in a flock over time. The aim of this study was to determine the rate of transmission of Campylobacter using field data gathered for 5 years for Australian broiler flocks. We used unique sampling data for 42 Campylobacter jejuni-colonized flocks and estimated the transmission rate, which is defined as the number of secondary infections caused by one colonized bird per day. The estimate was 2.37 ± 0.295 infections per infectious bird per day, which implies that in our study population colonized flocks consisting of 20,000 broilers would have an increase in within-flock prevalence to 95% within 4.4 to 7.2 days after colonization of the first broiler. Using Bayesian analysis, the moment of colonization of the first bird in a flock was estimated to be from 21 days of age onward in all flocks in the study. This study provides an important quantitative estimate of the rate of transmission of Campylobacter in broiler flocks, which could be helpful in future studies on the epidemiology of Campylobacter in the field

    Maternal Influenza A Virus Infection Restricts Fetal and Placental Growth and Adversely Affects the Fetal Thymic Transcriptome

    No full text
    Maternal influenza A viral infections in humans are associated with low birth weight, increased risk of pre‐term birth, stillbirth and congenital defects. To examine the effect of maternal influenza virus infection on placental and fetal growth, pregnant C57BL/6 mice were inoculated intranasally with influenza A virus A/CA/07/2009 pandemic H1N1 or phosphate‐buffered saline (PBS) at E3.5, E7.5 or E12.5, and the placentae and fetuses collected and weighed at E18.5. Fetal thymuses were pooled from each litter. Placentae were examined histologically, stained by immunohistochemistry (IHC) for CD34 (hematopoietic progenitor cell antigen) and vascular channels quantified. RNA from E7.5 and E12.5 placentae and E7.5 fetal thymuses was subjected to RNA sequencing and pathway analysis. Placental weights were decreased in litters inoculated with influenza at E3.5 and E7.5. Placentae from E7.5 and E12.5 inoculated litters exhibited decreased labyrinth development and the transmembrane protein 150A gene was upregulated in E7.5 placentae. Fetal weights were decreased in litters inoculated at E7.5 and E12.5 compared to controls. RNA sequencing of E7.5 thymuses indicated that 957 genes were downregulated ≥2‐fold including Mal, which is associated with Toll‐like receptor signaling and T cell differentiation. There were 28 upregulated genes. It is concluded that maternal influenza A virus infection impairs fetal thymic gene expression as well as restricting placental and fetal growth
    corecore