31 research outputs found

    Cytokinesis Monitoring during Development Rapid Pole-to-Pole Shuttling of a Signaling Protein by Localized Kinase and Phosphatase in Caulobacter

    Get PDF
    AbstractFor successful generation of different cell types by asymmetric cell division, cell differentiation should be initiated only after completion of division. Here, we describe a control mechanism by which Caulobacter couples the initiation of a developmental program to the completion of cytokinesis. Genetic evidence indicates that localization of the signaling protein DivK at the flagellated pole prevents premature initiation of development. Photobleaching and FRET experiments show that polar localization of DivK is dynamic with rapid pole-to-pole shuttling of diffusible DivK generated by the localized activities of PleC phosphatase and DivJ kinase at opposite poles. This shuttling is interrupted upon completion of cytokinesis by the segregation of PleC and DivJ to different daughter cells, resulting in disruption of DivK localization at the flagellated pole and subsequent initiation of development in the flagellated progeny. Thus, dynamic polar localization of a diffusible protein provides a control mechanism that monitors cytokinesis to regulate development

    Overproduced Brucella abortus PdhS-mCherry forms soluble aggregates in Escherichia coli, partially associating with mobile foci of IbpA-YFP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When heterologous recombinant proteins are produced in <it>Escherichia coli</it>, they often precipitate to form insoluble aggregates of unfolded polypeptides called inclusion bodies. These structures are associated with chaperones like IbpA. However, there are reported cases of "non-classical" inclusion bodies in which proteins are soluble, folded and active.</p> <p>Results</p> <p>We report that the <it>Brucella abortus </it>PdhS histidine kinase fused to the mCherry fluorescent protein forms intermediate aggregates resembling "non-classical" inclusion bodies when overproduced in <it>E. coli</it>, before forming "classical" inclusion bodies. The intermediate aggregates of PdhS-mCherry are characterized by the solubility of PdhS-mCherry, its ability to specifically recruit known partners fused to YFP, suggesting that PdhS is folded in these conditions, and the quick elimination (in less than 10 min) of these structures when bacterial cells are placed on fresh rich medium. Moreover, soluble PdhS-mCherry foci do not systematically colocalize with IpbA-YFP, a marker of inclusion bodies. Instead, time-lapse experiments show that IbpA-YFP exhibits rapid pole-to-pole shuttling, until it partially colocalizes with PdhS-mCherry aggregates.</p> <p>Conclusion</p> <p>The data reported here suggest that, in <it>E. coli</it>, recombinant proteins like PdhS-mCherry may transit through a soluble and folded state, resembling previously reported "non-classical" inclusion bodies, before forming "classical" inclusion bodies. The dynamic localization of IbpA-YFP foci suggests that the IbpA chaperone could scan the <it>E. coli </it>cell to find its substrates.</p

    An interdisciplinary study around the reliquary of the late cardinal Jacques de Vitry

    Get PDF
    The reliquary of Jacques de Vitry, a prominent clergyman and theologian in the early 13th century, has experienced several transfers over the last centuries, which seriously question the attribution of the remains to the late Cardinal. Uncertainty about the year of his birth poses an additional question regarding his age at death in 1240. The reliquary, located in the Saint Marie d'Oigines church, Belgium, was reopened in 2015 for an interdisciplinary study around his relics as well as the Treasure of Oignies, a remarkable cultural heritage notably built from Jacques de Vitry's donation. Anthropological, isotopic and genetic analyses were performed independently on the remains found in the reliquary. Results of the analyses provided evidence that the likelihood that these remains are those of Jacques de Vitry is very high: the remains belong to the same human male individual and the historical tradition about his age is confirmed. In addition, a separate relic (left tibia) was analysed and found to match with the remains of the reliquary (right tibia). The unique Jacques de Vitry's mitre, made of parchment, was sampled non-destructively and the extracted parchment collagen was analysed by a proteomic method in order to determine the animal species. The results showed that, surprisingly, not all parts of the mitre were made from the same species. All together, these findings are expected to fertilize knowledge carried by historical tradition around the relics of Jacques de Vitry and his related cultural heritage

    Phosphate Starvation Triggers Production and Secretion of an Extracellular Lipoprotein in Caulobacter crescentus

    Get PDF
    Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS) is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conlusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment
    corecore