50 research outputs found

    La pollution particulaire ultrafine

    Get PDF
    National audienceIl reste beaucoup d’inconnues sur le comportement des particules ultrafines dans l’organisme. Comment persistent-elles dans les régions alvéolaires et interagissent-elles avec les cellules pulmonaires ? Par quels mécanismes pourraient-elles être impliquées dans le développement ou l’exacerbation d’affections respiratoires

    Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions

    Get PDF
    International audienceBACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury

    miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1

    Get PDF
    As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al

    Polluants atmosphériques nanoparticulaires: Polluants atmosphériques nanoparticulaires : identification, caractérisation physico-chimique et recherche de biomarqueurs de pathogénicité pulmonaire

    Get PDF
    National audienceEn octobre 2013, le Centre international de recherche sur le cancer (Circ) a classé la pollution atmosphérique et les particules fines contenues dans la pollution atmosphérique comme cancérogènes certains pour l’homme (groupe 1). Actuellement, les normes européennes et françaises de qualité de l’air relatives aux particules portent essentiellement sur les PM10 et PM2.5 mais en aucun cas sur les particules ultrafines. Or, même si elles sont négligeables en masse, les particules ultrafines, dont la réactivité est potentiellement supérieure à celles des particules plus grosses, représentent en nombre 80% de l’aérosol urbain

    Cathepsine C et TIMP3 (deux nouveaux gènes candidats à la susceptibilité à la fibrose pulmonaire ?)

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF

    Identification and functional analysis of two rare allelic variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19.

    No full text
    Human thiopurine S-methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs. TPMT is genetically polymorphic and is associated with large interindividual variations in thiopurine drug toxicity and therapeutic efficacy. During routine genotyping of patients with Crohn's disease, one novel missense mutation, 365A>C (TPMT*19, Lys(122)Thr), and a recently described missense mutation, 488G>A (TPMT*16, Arg(163)His), were identified in a Caucasian and a Moroccan patient, respectively. Using a heterologous yeast expression system, kinetic parameters (K(m) and V(max)) of the two variants with respect to 6-thioguanine S-methylation were determined and compared with those obtained with the wild-type enzyme. The Lys(122)Thr exchange did not significantly decrease the intrinsic clearance value (V(max)/K(m)) of the variant enzyme. In contrast, the Arg(163)His substitution significantly decreased the intrinsic clearance value by three-fold. The Arg(163) is located in a highly conserved region of the human TPMT protein and, as such, the Arg(163)His substitution is expected to result in a marked reduction of enzyme activity, as confirmed by the in vitro data. Phenotyping by measurement of red blood cell TPMT activity indicated that the patient heterozygous for the Lys(122)Thr mutation had normal TPMT activity, whereas the patient heterozygous for the Arg(163)His mutation was an intermediate methylator, which demonstrated a positive correlation between TPMT phenotyping and the in vitro data. The identification of a novel non-functional allele of the TPMT gene improves our knowledge of the genetic basis of interindividual variability in TPMT activity. These data further enhance the efficiency of genotyping methods to predict patients at risk of an inadequate response to thiopurine therapy

    Metabolomics Provides Novel Insights into the Potential Toxicity Associated with Heated Tobacco Products, Electronic Cigarettes, and Tobacco Cigarettes on Human Bronchial Epithelial BEAS-2B Cells

    No full text
    Smoking is an established risk factor for various pathologies including lung cancer. Electronic cigarettes (e-cigs) and heated tobacco products (HTPs) have appeared on the market in recent years, but their safety or, conversely, their toxicity has not yet been demonstrated. This study aimed to compare the metabolome of human lung epithelial cells exposed to emissions of e-cigs, HTPs, or 3R4F cigarettes in order to highlight potential early markers of toxicity. BEAS-2B cells were cultured at the air–liquid interface and exposed to short-term emissions from e-cigs set up at low or medium power, HTPs, or 3R4F cigarettes. Untargeted metabolomic analyses were performed using liquid chromatography coupled with mass spectrometry. Compared to unexposed cells, both 3R4F cigarette and HTP emissions affected the profiles of exogenous compounds, one of which is carcinogenic, as well as those of endogenous metabolites from various pathways including oxidative stress, energy metabolism, and lipid metabolism. However, these effects were observed at lower doses for cigarettes (2 and 4 puffs) than for HTPs (60 and 120 puffs). No difference was observed after e-cig exposure, regardless of the power conditions. These results suggest a lower acute toxicity of e-cig emissions compared to cigarettes and HTPs in BEAS-2B cells. The pathways deregulated by HTP emissions are also described to be altered in respiratory diseases, emphasizing that the toxicity of HTPs should not be underestimated
    corecore