33 research outputs found

    Photon echoes in strongly scattering media: a diagrammatic approach

    Full text link
    We study photon echo generation in disordered media with the help of multiple scattering theory based on diagrammatic approach and numerical simulations. We show that a strong correlation exists between the driving fields at the origin of the echo and the echo beam. Opening the way to a better understanding of non-linear wave propagation in complex materials, this work supports recent experimental results with applications to the measurement of the optical dipole lifetime T2T_2 in powders

    Quantum memory for light: large efficiency at telecom wavelength

    Full text link
    We implement the ROSE protocol in an erbium doped solid, compatible with the telecom range. The ROSE scheme is an adaptation of the standard 2-pulse photon echo to make it suitable for a quantum memory. We observe an efficiency of 40% in a forward direction by using specific orientations of the light polarizations, magnetic field and crystal axes

    Selective optical addressing of nuclear spins through superhyperfine interaction in rare-earth doped solids

    Full text link
    In Er3+^{3+}:Y2_2SiO5_5, we demonstrate the selective optical addressing of the 89^{89}Y3+^{3+} nuclear spins through their superhyperfine coupling with the Er3+^{3+} electronic spins possessing large Land\'e gg-factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3+^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.Comment: 5 pages, 4 figures, supplementary material (3 pages

    Securing coherence rephasing with a pair of adiabatic rapid passages

    Get PDF
    Coherence rephasing is an essential step in quantum storage protocols that use echo-based strategies. We present a thorough analysis on how two adiabatic rapid passages (ARP) are able to rephase atomic coherences in an inhomogeneously broadened ensemble. We consider both the cases of optical and spin coherences, rephased by optical or radio-frequency (rf) ARPs, respectively. We show how a rephasing sequence consisting of two ARPs in a double-echo scheme is equivalent to the identity operator (any state can be recovered), as long as certain conditions are fulfilled. Our mathematical treatment of the ARPs leads to a very simple geometrical interpretation within the Bloch sphere that permits a visual comprehension of the rephasing process. We also identify the conditions that ensure the rephasing, finding that the phase of the optical or rf ARP fields plays a key role in the capability of the sequence to preserve the phase of the superposition state. This settles a difference between optical and rf ARPs, since field phase control is not readily guaranteed in the former case. We also provide a quantitative comparison between π\pi-pulse and ARP rephasing efficiencies, showing the superiority of the latter. We experimentally verify the conclusions of our analysis through rf ARP rephasing sequencies performed on the rare-earth ion-doped crystal Tm3+^{3+}:YAG, of interest in quantum memories.Comment: 24 pages, 7 figure

    Interlaced spin grating for optical wave filtering

    Full text link
    Interlaced Spin Grating is a scheme for the preparation of spectro-spatial periodic absorption gratings in a inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an Interlaced Spin Grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3% in the small angle, and 11.6% in the large angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.Comment: 11 pages, 13 figures in Physical Review A, 201

    Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window

    Get PDF
    We study the bandwidth and multiplexing capacity of an erbium-doped optical memory for quantum storage purposes. We concentrate on the protocol ROSE (Revival of a Silenced Echo) because it has the largest potential multiplexing capacity. Our analysis is applicable to other protocols that involve strong optical excitation. We show that the memory performance is limited by instantaneous spectral diffusion and we describe how this effect can be minimised to achieve optimal performance

    Ralentir le déphasage des états de superposition atomiques dans un cristal de Tm3+ (YAG)

    Get PDF
    Ce travail se place dans le contexte des recherches sur les mémoires quantiques pour la lumière. L information quantique est stockée dans un état de superposition atomique, dont la durée de vie détermine le temps maximum de stockage.On s intéresse particulièrement aux matériaux capables de capturer la lumière par excitation résonnante d une raie d absorption, puis de conserver l information quantique dans un état de superposition du fondamental électronique.Dans Tm3+:YAG, l information est enregistrée dans un état de spin nucléaire. Cependant le champ magnétique qui lève la dégénérescence nucléaire entraîne les différents spins à des vitesses de précession différentes, ce qui tend à détruire l aimantation initiale, porteuse de l information.Une étude quantique du cristal est réalisée lors du premier chapitre de ce manuscrit. Les trois chapitres suivants traitent des différents mécanismes conduisant au déphasage des spins nucléaires. On y trouvera différente analyses théoriques qui seront confirmées par un ensemble de résultats expérimentaux, ainsi qu une description détaillée du dispositif expérimental. Enfin le dernier chapitre, prospectif, exploite les outils développés au cours de la thèse pour préserver les cohérences optiques. Il présente quelques résultats expérimentaux prometteurs sur l allongement du temps de vie de ces cohérences optiques.This work takes place in the context of research about quantum memories for light. The quantum information is stored in an atomic superposition state whose lifetime sets the maximum storage time. We are particularly interested in materials which are able to hold the light by resonant excitation of an absorption line, preserving the quantum information in a superposition state of the electronicfundamental.n Tm3+:YAG the information is stored in a nuclear spin state. However, the magnetic field which lifts the nuclear degeneracy generates different precession speeds of the spins. This destroys theinitial magnetization carrier of the information.In the first chapter of this thesis, a quantum analysis of the crystal is done. The following three chapters are devoted to different mechanisms to control the nuclear spins dephasing. There it ispossible to find different theoretical analysis which will be confirmed by a series of experimental measurements, including an extended description of the set-up. Finally, the last chapter presentsthe different techniques used to preserve the optical coherence. Promising experimental measurements are presented to extend the life time of the optical coherences.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Time reversal of light by linear dispersive filtering near atomic resonance

    Get PDF
    Based on the similarity of paraxial diffraction and dispersion mathematical descriptions, the temporal imaging of optical pulses combines linear dispersive filters and quadratic phase modulations operating as time lenses. We consider programming a dispersive filter near atomic resonance in rare earth ion doped crystals, which leads to unprecedented high values of dispersive power. This filter is used in an approximate imaging scheme, combining a single time lens and a single dispersive section and operating as a time reversing device, with potential applications in radio-frequency signal processing. This scheme is closely related to three-pulse photon echo with chirped pulses but the connection with temporal imaging and dispersive filtering emphasizes new features.Comment: 21 pages, 11 figure

    Stimulated Raman adiabatic passage in Tm3+:YAG

    Get PDF
    International audienceWe report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ : YAG crystal. Tm 3+ : YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ : YAG system are presented along with the corresponding experimental results
    corecore