380 research outputs found

    Efficient dot product over word-size finite fields

    Full text link
    We want to achieve efficiency for the exact computation of the dot product of two vectors over word-size finite fields. We therefore compare the practical behaviors of a wide range of implementation techniques using different representations. The techniques used include oating point representations, discrete logarithms, tabulations, Montgomery reduction, delayed modulus

    Bounds on the coefficients of the characteristic and minimal polynomials

    Full text link
    This note presents absolute bounds on the size of the coefficients of the characteristic and minimal polynomials depending on the size of the coefficients of the associated matrix. Moreover, we present algorithms to compute more precise input-dependant bounds on these coefficients. Such bounds are e.g. useful to perform deterministic chinese remaindering of the characteristic or minimal polynomial of an integer matrix

    Matrix powers algorithms for trust evaluation in PKI architectures

    Get PDF
    This paper deals with the evaluation of trust in public-key infrastructures. Different trust models have been proposed to interconnect the various PKI components in order to propagate the trust between them. In this paper we provide a new polynomial algorithm using linear algebra to assess trust relationships in a network using different trust evaluation schemes. The advantages are twofold: first the use of matrix computations instead of graph algorithms provides an optimized computational solution; second, our algorithm can be used for generic graphs, even in the presence of cycles. Our algorithm is designed to evaluate the trust using all existing (finite) trust paths between entities as a preliminary to any exchanges between PKIs. This can give a precise evaluation of trust, and accelerate for instance cross-certificate validation

    Symmetric indefinite triangular factorization revealing the rank profile matrix

    Get PDF
    We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization PTAP=LDLT\mathbf{P}^T\mathbf{A}\mathbf{P} = \mathbf{L}\mathbf{D}\mathbf{L}^T where P\mathbf{P} is a permutation matrix, L\mathbf{L} is lower triangular with a unit diagonal and D\mathbf{D} is symmetric block diagonal with 1×11{\times}1 and 2×22{\times}2 antidiagonal blocks. The novel algorithm requires O(n2rω−2)O(n^2r^{\omega-2}) arithmetic operations. Furthermore, experimental results demonstrate that our algorithm can even be slightly more than twice as fast as the state of the art unsymmetric Gaussian elimination in most cases, that is it achieves approximately the same computational speed. By adapting the pivoting strategy developed in the unsymmetric case, we show how to recover the rank profile matrix from the permutation matrix and the support of the block-diagonal matrix. There is an obstruction in characteristic 22 for revealing the rank profile matrix which requires to relax the shape of the block diagonal by allowing the 2-dimensional blocks to have a non-zero bottom-right coefficient. This relaxed decomposition can then be transformed into a standard PLDLTPT\mathbf{P}\mathbf{L}\mathbf{D}\mathbf{L}^T\mathbf{P}^T decomposition at a negligible cost

    An introspective algorithm for the integer determinant

    Full text link
    We present an algorithm computing the determinant of an integer matrix A. The algorithm is introspective in the sense that it uses several distinct algorithms that run in a concurrent manner. During the course of the algorithm partial results coming from distinct methods can be combined. Then, depending on the current running time of each method, the algorithm can emphasize a particular variant. With the use of very fast modular routines for linear algebra, our implementation is an order of magnitude faster than other existing implementations. Moreover, we prove that the expected complexity of our algorithm is only O(n^3 log^{2.5}(n ||A||)) bit operations in the dense case and O(Omega n^{1.5} log^2(n ||A||) + n^{2.5}log^3(n||A||)) in the sparse case, where ||A|| is the largest entry in absolute value of the matrix and Omega is the cost of matrix-vector multiplication in the case of a sparse matrix.Comment: Published in Transgressive Computing 2006, Grenade : Espagne (2006

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    An hybrid system approach to nonlinear optimal control problems

    Full text link
    We consider a nonlinear ordinary differential equation and want to control its behavior so that it reaches a target by minimizing a cost function. Our approach is to use hybrid systems to solve this problem: the complex dynamic is replaced by piecewise affine approximations which allow an analytical resolution. The sequence of affine models then forms a sequence of states of a hybrid automaton. Given a sequence of states, we introduce an hybrid approximation of the nonlinear controllable domain and propose a new algorithm computing a controllable, piecewise convex approximation. The same way the nonlinear optimal control problem is replaced by an hybrid piecewise affine one. Stating a hybrid maximum principle suitable to our hybrid model, we deduce the global structure of the hybrid optimal control steering the system to the target
    • …
    corecore