27 research outputs found

    Complexation between oppositely charged polyelectrolytes: beyond the Random Phase Approximation

    Full text link
    We consider the phase behavior of polymeric systems by calculating the structure factors beyond the Random Phase Approximation. The effect of this correction to the mean-field RPA structure factor is shown to be important in the case of coulombic systems. Two examples are given: simple electrolytes and mixtures of incompatible oppositely charged polyelectrolytes. In this last case, all former studies predicted an enhancement of compatibility for increasing charge densities; we also describe the complexation transition between the polyelectrolytes. We determine a phase diagram of the polyelectrolyte mixture that includes both complexation and incompatibility.Comment: 18 pages, 4 figures. Submitted to EPJ-

    Charge Distribution on Annealed Polyelectrolytes

    Full text link
    We investigate the equilibrium charge distribution along a single annealed polyelectrolyte chain under different conditions. The coupling between the conformation of the chain and the local charge distribution is described for various solvent qualities and salt concentration. In salt free solution, we find a slight charge depletion in the central part of the chain: the charges accumulate at the ends. The effect is less important if salt is added to the solution since the charge inhomogeneity is localized close to the chain ends over a distance of order of the Debye length. In the case of poor solvent conditions we find a different charging of beads and strings in the framework of the necklace model. This inhomogeneity leads to a charge instability and a first order transition between spherical globules and elongated chains.Comment: 20 pages, 4 figure

    Motion of an Adhesive Gel in a Swelling Gradient: a Mechanism for Cell Locomotion

    Get PDF
    Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-generated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.Comment: 4 pages, 1 figur

    Theoretical Study of Comb-Polymers Adsorption on Solid Surfaces

    Full text link
    We propose a theoretical investigation of the physical adsorption of neutral comb-polymers with an adsorbing skeleton and non-adsorbing side-chains on a flat surface. Such polymers are particularly interesting as "dynamic coating" matrices for bio-separations, especially for DNA sequencing, capillary electrophoresis and lab-on-chips. Separation performances are increased by coating the inner surface of the capillaries with neutral polymers. This method allows to screen the surface charges, thus to prevent electro-osmosis flow and adhesion of charged macromolecules (e.g. proteins) on the capillary walls. We identify three adsorption regimes: a "mushroom" regime, in which the coating is formed by strongly adsorbed skeleton loops and the side-chains anchored on the skeleton are in a swollen state, a "brush" regime, characterized by a uniform multi-chains coating with an extended layer of non-adsorbing side-chains and a non-adsorbed regime. By using a combination of mean field and scaling approaches, we explicitly derive asymptotic forms for the monomer concentration profiles, for the adsorption free energy and for the thickness of the adsorbed layer as a function of the skeleton and side-chains sizes and of the adsorption parameters. Moreover, we obtain the scaling laws for the transitions between the different regimes. These predictions can be checked by performing experiments aimed at investigating polymer adsorption, such as Neutron or X-ray Reflectometry, Ellipsometry, Quartz Microbalance, or Surface Force Apparatus.Comment: 30 pages, 7 figures, to be published in Macromolecule

    Casimir stresses in active nematic films

    Full text link
    We calculate the Casimir stresses in a thin layer of active fluid with nematic order. By using a stochastic hydrodynamic approach for an active fluid layer of finite thickness LL, we generalize the Casimir stress for nematic liquid crystals in thermal equilibrium to active systems. We show that the active Casimir stress differs significantly from its equilibrium counterpart. For contractile activity, the active Casimir stress, although attractive like its equilibrium counterpart, diverges logarithmically as LL approaches a threshold of the spontaneous flow instability from below. In contrast, for small extensile activity, it is repulsive, has no divergence at any LL and has a scaling with LL different from its equilibrium counterpart

    The actin cortex as an active wetting layer

    Full text link
    Using active gel theory we study theoretically the properties of the cortical actin layer of animal cells. The cortical layer is described as a non-equilibrium wetting film on the cell membrane. The actin density is approximately constant in the layer and jumps to zero at its edge. The layer thickness is determined by the ratio of the polymerization velocity and the depolymerization rate of actin.Comment: submitted to Eur Phys Jour

    Vertex model instabilities for tissues subject to cellular activity or applied stresses

    Full text link
    The vertex model is widely used to describe the dynamics of epithelial tissues, because of its simplicity and versatility and the direct inclusion of biophysical parameters. Here, it is shown that quite generally, when cells modify their equilibrium perimeter due to their activity, or the tissue is subject to external stresses, the tissue becomes unstable with deformations that couple pure-shear or deviatoric modes, with rotation and expansion modes. For short times, these instabilities deform cells increasing their ellipticity while, at longer times, cells become non-convex, indicating that the vertex model ceases to be a valid description for tissues under these conditions. The agreement between the analytic calculations performed for a regular hexagonal tissue and the simulations of disordered tissues is excellent due to the homogenization of the tissue at long wavelengths

    Active gels: towards a physical description of the cytoskeleton

    No full text
    Joanny, Jean-Francois. (2012). Active gels: towards a physical description of the cytoskeleton. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/129618

    Lubrication by molten polymer brushes

    No full text
    corecore