70 research outputs found

    Characterization of a Structural Intermediate of Flavivirus Membrane Fusion

    Get PDF
    Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion

    Characterization of Monomeric Intermediates during VSV Glycoprotein Structural Transition

    Get PDF
    Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV) glycoprotein G ectodomain (Gth, aa residues 1–422, the fragment that was previously crystallized). While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, Gth is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition

    The interaction between lipid derivatives of colchicine and tubulin: Consequences of the interaction of the alkaloid with lipid membranes

    Get PDF
    AbstractColchicine is a potent antimitotic poison which is well known to prevent microtubule assembly by binding tubulin very tightly. Colchicine also possesses anti-inflammatory properties which are not well understood yet. Here we show that colchicine tightly interacts with lipid layers. The physical and biological properties of three different lipid derivatives of colchicine are investigated parallel to those of membrane lipids in the presence of colchicine. Upon insertion in the fatty alkyl chains, colchicine rigidifies the lipid monolayers in a fluid phase and fluidifies rigid monolayers. Similarly X-ray diffraction data show that lecithin–water phases are destabilized by colchicine. In addition, an unexpectedly drastic enhancement of the photoisomerization rate of colchicine into lumicolchicine in the lipid environment is observed and further supports insertion of the alkaloid in membranes. Finally the interaction of colchicine with lipids makes the drug inaccessible to tubulin. The possible in vivo significance of these results is discussed

    Cryo-electron microscopy of viruses

    Get PDF
    Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare favourably with any other electron microscopical method

    High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity

    Get PDF
    CD40-CD154 interactions have proven critical in autoimmunity, with the identification of CD4(lo)CD40(+) T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.Cells were sorted into CD4(hi) and CD4(lo) (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-kappaB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-kappaB DNA-binding activity and anti-apoptotic Bcl-X(L) expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIP(p43) induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis

    Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target

    Get PDF
    BACKGROUND: The cross-talk between pathogenic T lymphocytes and regulatory T cells (Tregs) plays a major role in the progression of autoimmune diseases. Our objective is to identify molecules and/or pathways involved in this interaction and representing potential targets for innovative therapies. Glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand are key players in the T effector/Treg interaction. GITR is expressed at low levels on resting T cells and is significantly up-regulated upon activation. Constitutive high expression of GITR is detected only on Tregs. GITR interacts with its ligand mainly expressed on antigen presenting cells and endothelial cells. It has been suggested that GITR triggering activates effector T lymphocytes while inhibiting Tregs thus contributing to the amplification of immune responses. In this study, we examined the role of GITR/GITRLigand interaction in the progression of autoimmune diabetes. METHODS AND FINDINGS: Treatment of 10-day-old non-obese diabetic (NOD) mice, which spontaneously develop diabetes, with an agonistic GITR-specific antibody induced a significant acceleration of disease onset (80% at 12 weeks of age). This activity was not due to a decline in the numbers or functional capacity of CD4(+)CD25(+)Foxp3(+) Tregs but rather to a major activation of 'diabetogenic' T cells. This conclusion was supported by results showing that anti-GITR antibody exacerbates diabetes also in CD28(-/-) NOD mice, which lack Tregs. In addition, treatment of NOD mice, infused with the diabetogenic CD4(+)BDC2.5 T cell clone, with GITR-specific antibody substantially increased their migration, proliferation and activation within the pancreatic islets and draining lymph nodes. As a mirror image, blockade of the GITR/GITRLigand pathway using a neutralizing GITRLigand-specific antibody significantly protected from diabetes even at late stages of disease progression. Experiments using the BDC2.5 T cell transfer model suggested that the GITRLigand antibody acted by limiting the homing and proliferation of pathogenic T cells in pancreatic lymph nodes. CONCLUSION: GITR triggering plays an important costimulatory role on diabetogenic T cells contributing to the development of autoimmune responses. Therefore, blockade of the GITR/GITRLigand pathway appears as a novel promising clinically oriented strategy as GITRLigand-specific antibody applied at an advanced stage of disease progression can prevent overt diabetes

    Etude de VP7, protéine structurale impliquée dans la régulation de la transcription et l'entrée du rotavirus

    No full text
    Les rotavirus sont constitués d'une triple capside icosaédrique. La glycoprotéine VP7 constitue la couche externe de la capside. VP7 intervient dans la régulation de la transcription et l'entrée du virus. Ces différentes fonctions dépendent de sa conformation structurale, laquelle est conditionnée par la présence ou l'absence de certains cations. Au cours de ce travail, nous avons caractérisé les intéractions cationiques essentielles à l'assemblage de VP7 sur VP6 et à sa solubilisation. Nous avons comparé des structures de particules possédant ou pas VP7. Nos résultats montrent que VP7 inhibe la transcription en imposant un changement de position et d'orientation des trimères de VP6 situés autour des axes 5 qui provoque le rétrécissement des canaux de type I. Enfin, nous avons précisé le rôle de VP7 et d'un peptide (pep46) dans l'entrée du rotavirus et du birnavirus respectivement. Ces deux virus utilisent le même mécanisme d'entrée, une endocytose suivie d'une perméabilisation de la membrane endosomale faisant intervenir un gradient calcique et une protéase.Résumé anglaisCHATENAY M.-PARIS 11-BU Pharma. (920192101) / SudocSudocFranceF

    Identification of Rotavirus VP6 Residues Located at the Interface with VP2 That Are Essential for Capsid Assembly and Transcriptase Activity

    No full text
    Rotavirus has a complex triple-layered icosahedral capsid. The external layer consists of VP7 and VP4, the intermediate layer consists of VP6 trimers, and the internal layer consists of VP2. Double-layered particles (DLP) derived from the virus by solubilization of VP4 and VP7 are transcriptionally competent and extrude capped mRNA from their vertices. Analysis of the pseudoatomic model of the VP6 layer, obtained by placing the atomic structure of VP6 into electron microscopy reconstructions of the DLP, has identified the regions of the protein involved in interactions with the internal layer. To study the role of VP6 both in the assembly of DLP and in transcription, 13 site-specific substitution mutations of VP6, targeting the contacts between the two inner layers, were constructed and expressed in the baculovirus system. The effects of these mutations on VP6 expression, trimerization, and formation of macromolecular assemblies were investigated. Using either in vitro reconstituted DLP derived from purified viral cores and recombinant VP6 or in vivo self-assembled virus-like particles resulting from the coexpression of VP2 and VP6 in the baculovirus-Sf9 system (VLP2/6), we have identified the amino acids essential for recovery of transcription or assembly. All VP6 mutants formed stable trimers which, like wild-type VP6, assembled into tubular structures. The ability of VP6 to interact with VP2 was examined by several assays, including electron microscopy, coimmunoprecipitation, purification of VLP2/6, and monitoring of the transcriptase activity of reconstituted DLP. Of the 13 VP6 mutants examined, 3 were unable to assemble with VP2 and 3 others partially assembled. These mutants either did not rescue the transcriptase activity of core particles or did so only marginally. Four mutants as well as the wild-type VP6 assembled and transcribed very well. Three mutants assembled well on cores but, surprisingly, did not rescue the transcriptase activity of reconstituted DLP. Our results indicate that hydrophobic interactions between VP6 and VP2 residues are responsible for the stability of the DLP. They also show that subtle electrostatic interactions between VP6 and the underlying transcriptase machinery can be essential for mRNA synthesis
    corecore