377 research outputs found
Experimental scaling law for the sub-critical transition to turbulence in plane Poiseuille flow
We present an experimental study of transition to turbulence in a plane
Poiseuille flow. Using a well-controlled perturbation, we analyse the flow
using extensive Particule Image Velocimetry and flow visualisation (using Laser
Induced Fluorescence) measurements and use the deformation of the mean velocity
profile as a criterion to characterize the state of the flow. From a large
parametric study, four different states are defined depending on the values of
the Reynolds number and the amplitude of the perturbation. We discuss the role
of coherent structures, like hairpin vortices, in the transition. We find that
the minimal amplitude of the perturbation triggering transition scales like
Re^-1
Permutation-invariant distance between atomic configurations
We present a permutation-invariant distance between atomic configurations,
defined through a functional representation of atomic positions. This distance
enables to directly compare different atomic environments with an arbitrary
number of particles, without going through a space of reduced dimensionality
(i.e. fingerprints) as an intermediate step. Moreover, this distance is
naturally invariant through permutations of atoms, avoiding the time consuming
associated minimization required by other common criteria (like the Root Mean
Square Distance). Finally, the invariance through global rotations is accounted
for by a minimization procedure in the space of rotations solved by Monte Carlo
simulated annealing. A formal framework is also introduced, showing that the
distance we propose verifies the property of a metric on the space of atomic
configurations. Two examples of applications are proposed. The first one
consists in evaluating faithfulness of some fingerprints (or descriptors), i.e.
their capacity to represent the structural information of a configuration. The
second application concerns structural analysis, where our distance proves to
be efficient in discriminating different local structures and even classifying
their degree of similarity
Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework
Metal–organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare. The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite significant progress of these components made in recent years. Here we report the synthesis and properties of a new highly crystalline, electrochemically active, cobalt and naphthalene diimide-based MOF that is an efficient electrical semiconductor and has a broad absorption spectrum, from 300 to 2500 nm. Its semiconductivity was determined by direct voltage bias using a four-point device, and it features a wavelength dependant photoconductive–photoresistive dual behaviour, with a very high responsivity of 2.5 × 105 A W−1
Modelled target attainment after temocillin treatment in severe pneumonia: systemic and epithelial lining fluid pharmacokinetics of continuous versus intermittent infusions.
Objectives: To describe the population pharmacokinetics of temocillin administered via continuous versus intermittent infusion in critically ill patients with pneumonia. Secondary objectives included characterization of epithelial lining fluid (ELF)/plasma penetration ratios and determination of the probability of target attainment (PTA) for a range of MICs. Methods: Thirty-two mechanically ventilated patients who were treated for pneumonia with 6g of temocillin daily for in vitro sensitive pathogens were assigned either to the II (2g every 8h over 0.5h) or to the CI (6g over 24h after a loading dose of 2g) group. A population pharmacokinetic model was developed using unbound plasma and total ELF concentrations of temocillin and related Monte Carlo simulations were performed to assess PTAs. Results: The AUC(0-24) ELF/plasma penetration ratio was 0.73, at steady-state, for both modes of infusion and whatever the level of creatinine clearance. Monte Carlo simulations showed for the minimal pharmacodynamic (PD) targets of 50% T> 1X MIC (II group) and 100% T > 1X MIC (CI group), PK/PD breakpoints of 4 mg/L in plasma and 2 mg/L in ELF and 4mg/L in plasma and ELF, respectively. The breakpoint was 8 mg/L in ELF for both modes of infusion in patients with CL(CR)<60mL/min. Conclusion: While CI provides better PKPD indexes, the latter remain below available recommendations for systemic infections, except in case of moderate renal impairment, thereby warranting future clinical studies in order to determine the efficacy of temocillin in severe pneumonia
Approaches to forecasting damage by invasive forest insects and pathogens : a cross-assessment
Non-native insects and pathogens pose major threats to forest ecosystems worldwide, greatly diminishing the ecosystem services trees provide. Given the high global diversity of arthropod and microbial species, their often unknown biological features or even identities, and their ease of accidental transport, there is an urgent need to better forecast the most likely species to cause damage. Several risk assessment approaches have been proposed or implemented to guide preventative measures. However, the underlying assumptions of each approach have rarely been explicitly identified or critically evaluated. We propose that evaluating the implicit assumptions, optimal usages, and advantages and limitations of each approach could help improve their combined utility. We consider four general categories: using prior pest status in native and previously invaded regions; evaluating statistical patterns of traits and gene sequences associated with a high impact; sentinel and other plantings to expose trees to insects and pathogens in native, nonnative, or experimental settings; and laboratory assays using detached plant parts or seedlings under controlled conditions. We evaluate how and under what conditions the assumptions of each approach are best met and propose methods for integrating multiple approaches to improve our forecasting ability and prevent losses from invasive pests.The University of Wisconsin–Madison’s College of Agricultural and Life Sciences, Graduate School; Vilas-Sorenson Professorship; OP RDE; the HOMED project which received funding from the European Union's Horizon 2020 research and innovation program; the Department of Science and Technolog; the National Research Foundation (NRF) Center of Excellence in Plant Health Biotechnology and the University of Pretoria.https://academic.oup.com/bioscienceForestry and Agricultural Biotechnology Institute (FABI)SDG-15:Life on lan
The Benefits Conferred by Radial Access for Cardiac Catheterization Are Offset by a Paradoxical Increase in the Rate of Vascular Access Site Complications With Femoral Access The Campeau Radial Paradox
AbstractObjectivesThe purpose of this study was to assess whether the benefits conferred by radial access (RA) at an individual level are offset by a proportionally greater incidence of vascular access site complications (VASC) at a population level when femoral access (FA) is performed.BackgroundThe recent widespread adoption of RA for cardiac catheterization has been associated with increased rates of VASCs when FA is attempted.MethodsLogistic regression was used to calculate the adjusted VASC rate in a contemporary cohort of consecutive patients (2006 to 2008) where both RA and FA were used, and compared it with the adjusted VASC rate observed in a historical control cohort (1996 to 1998) where only FA was used. We calculated the adjusted attributable risk to estimate the proportion of VASC attributable to the introduction of RA in FA patients of the contemporary cohort.ResultsA total of 17,059 patients were included. At a population level, the VASC rate was higher in the overall contemporary cohort compared with the historical cohort (adjusted rates: 2.91% vs. 1.98%; odds ratio [OR]: 1.48, 95% confidence interval [CI]: 1.17 to 1.89; p = 0.001). In the contemporary cohort, RA patients experienced fewer VASC than FA patients (adjusted rates: 1.44% vs. 4.19%; OR: 0.33, 95% CI: 0.23 to 0.48; p < 0.001). We observed a higher VASC rate in FA patients in the contemporary cohort compared with the historical cohort (adjusted rates: 4.19% vs. 1.98%; OR: 2.16, 95% CI: 1.67 to 2.81; p < 0.001). This finding was consistent for both diagnostic and therapeutic catheterizations separately. The proportion of VASCs attributable to RA in the contemporary FA patients was estimated at 52.7%.ConclusionsIn a contemporary population where both RA and FA were used, the safety benefit associated with RA is offset by a paradoxical increase in VASCs among FA patients. The existence of this radial paradox should be taken into consideration, especially among trainees and default radial operators
Unstable Flow and Non-Monotonic Constitutive Equation of Transient Networks
We have measured the nonlinear rheological response of a model transient
network over a large range of steady shear rates. The system is built up from
an oil in water droplet microemulsion into which a telechelic polymer is
incorporated. The phase behaviour is characterized which comprises a liquid-gas
phase separation and a percolation threshold. The rheological measurements are
performed in the one phase region above the percolation line. Shear thinning is
observed for all samples, leading in most cases to an unstable stress response
at intermediate shear rates. We built up a very simple mean field model which
involves the reduction of the residence time of the stickers in the droplets
due to the chain tensions at high shear. The computed constitutive equation is
non-monotonic with a range where the stress is a decreasing function of the
rate, a feature that indeed makes homogeneous flows unstable. The computed the
flow curves compare well to the experiments.Comment: mai 200
Increasing Prevalence of Myopia in Europe and the Impact of Education
Purpose To investigate whether myopia is becoming more common across Europe and explore whether increasing education levels, an important environmental risk factor for myopia, might explain any temporal trend. Design Meta-analysis of population-based, cross-sectional studies from the European Eye Epidemiology (E3) Consortium. Participants The E3 Consortium is a collaborative network of epidemiological studies of common eye diseases in adults across Europe. Refractive data were available for 61 946 participants from 15 population-based studies performed between 1990 and 2013; participants had a range of median ages from 44 to 78 years. Methods Noncycloplegic refraction, year of birth, and highest educational level achieved were obtained for all participants. Myopia was defined as a mean spherical equivalent ≤-0.75 diopters. A random-effects meta-analysis of age-specific myopia prevalence was performed, with sequential analyses stratified by year of birth and highest level of educational attainment. Main Outcome Measures Variation in age-specific myopia prevalence for differing years of birth and educational level. Results There was a significant cohort effect for increasing myopia prevalence across more recent birth decades; age-standardized myopia prevalence increased from 17.8% (95% confidence interval [CI], 17.6-18.1) to 23.5% (95% CI, 23.2-23.7) in those born between 1910 and 1939 compared with 1940 and 1979 (P = 0.03). Education was significantly associated with myopia; for those completing primary, secondary, and higher education, the age-standardized prevalences were 25.4% (CI, 25.0-25.8), 29.1% (CI, 28.8-29.5), and 36.6% (CI, 36.1-37.2), respectively. Although more recent birth cohorts were more educated, this did not fully explain the cohort effect. Compared with the reference risk of participants born in the 1920s with only primary education, higher education or being born in the 1960s doubled the myopia prevalence ratio-2.43 (CI, 1.26-4.17) and 2.62 (CI, 1.31-5.00), respectively - whereas individuals born in the 1960s and completing higher education had approximately 4 times the reference risk: a prevalence ratio of 3.76 (CI, 2.21-6.57). Conclusions Myopia is becoming more common in Europe; although education levels have increased and are associated with myopia, higher education seems to be an additive rather than explanatory factor. Increasing levels of myopia carry significant clinical and economic implications, with more people at risk of the sight-threatening complications associated with high myopia
- …