3 research outputs found

    Polarisation of high-energy emission in a pulsar striped wind

    Full text link
    Recent observations of the polarisation of the optical pulses from the Crab pulsar motivated detailed comparative studies of the emission predicted by the polar cap, the outer gap and the two-pole caustics models. In this work, we study the polarisation properties of the synchrotron emission emanating from the striped wind model. We use an explicit asymptotic solution for the large-scale field structure related to the oblique split monopole and valid for the case of an ultra-relativistic plasma. This is combined with a crude model for the emissivity of the striped wind and of the magnetic field within the dissipating stripes themselves. We calculate the polarisation properties of the high-energy pulsed emission and compare our results with optical observations of the Crab pulsar. The resulting radiation is linearly polarised. In the off-pulse region, the electric vector lies in the direction of the projection on the sky of the rotation axis of the pulsar, in good agreement with the data. Other properties such as a reduced degree of polarisation and a characteristic sweep of the polarisation angle within the pulses are also reproduced.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.108-11

    Forced oscillations in relativistic accretion disks and QPOs

    Get PDF
    In this work we explore the idea that the high frequency QPOs observed in LMXBs may be explained as a resonant coupling between the neutron star spin and epicyclic modes of accretion disk oscillations. We propose a new model for these QPOs based on forced oscillations induced in the accretion disk due to a stellar asymmetric rotating gravitational or magnetic field. It is shown that particles evolving in a rotating non-axisymmetric field are subject to three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driving force, and a parametric resonance due to the time varying epicyclic frequencies. These results are extends by means of 2D numerical simulations of a simplified version of the accretion disk. The simulations are performed for the Newtonian gravitational potential, as well as for a pseudo-general relativistic potential, which enables us to explore the behavior of the resonances around both rotating neutron stars and black holes. Density perturbations are only significant in the region located close to the inner edge of the disk near the ISCO where the gravitational or magnetic perturbation is maximal. It is argued that the nearly periodic motion induced in the disk will produce high quality factor QPOs. Finally, applying this model to a typical neutron star, we found that the strongest response occurs when the frequency difference of the two modes equals either the spin frequency (for "slow rotators") or half of it (for "fast rotators"). The two main excited modes may both be connected to vertical oscillations of the disk. We emphasize that strong gravity is not needed to excite the modes.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.189-19
    corecore