5 research outputs found

    Achieving an excellent efficiency of 11.57% in a polymer solar cell submodule with a 55 cm2 active area using 1D/2A terpolymers and environmentally friendly nonhalogenated solvents

    No full text
    The transition of polymer solar cells (PSCs) from laboratory-scale unit cells to industrial-scale modules requires the development of new p-type polymers for high-performance large-area PSC modules based on environmentally friendly processes. Herein, a series of 1D/2A terpolymers (PBTPttBD) composed of benzo[1,2-b:4,5-b’]dithiophene (BDT-F), thieno[3,4-c]pyrrole-4,6(5H)-dione (TPD-TT), and benzo-[1,2-c:4,5-c’]dithiophene-4,8-dione (BDD) is synthesized for nonhalogenated solvent processed PSC submodules. The optical, electrochemical, charge-transport, and nano-morphological properties of the PBTPttBD terpolymers are modulated by adjusting the molar ratio of the TPD-TT and BDD components. PBTPttBD-75:BTP-eC11-based PSC submodules, processed with o-xylene, achieve a notable PCE of 11.57% over a 55 cm2 active area. This PCE value is among the highest reported using a nonhalogenated solvent over a 55 cm2 active area module. The optimized PSC submodule exhibits minimal cell-to-module loss, which can be attributed to the optimized crystallinity of the PBTPttBD-75:BTP-eC11 photoactive layer system and favorable film formation kinetics. (Figure presented.). © 2023 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.TRU

    π‑Conjugated Polymer with Pendant Side Chains as a Dopant-Free Hole Transport Material for High-Performance Perovskite Solar Cells

    No full text
    Dopant-free polymeric hole transport materials (HTMs) have attracted considerable attention in perovskite solar cells (PSCs) due to their high carrier mobilities and excellent hydrophobicity. They are considered promising candidates for HTMs to replace commercial Spiro-OMeTAD to achieve long-term stability and high efficiency in PSCs. In this study, we developed BDT-TA-BTASi, a conjugated donor−π–acceptor polymeric HTM. The donor benzo[1,2-b:4,5-b′]dithiophene (BDT) and acceptor benzotriazole (BTA) incorporated pendant siloxane, and alkyl side chains led to high hole mobility and solubility. In addition, BDT-TA-BTASi can effectively passivate the perovskite layer and markedly decrease the trap density. Based on these advantages, dopant-free BDT-TA-BTASi-based PSCs achieved an efficiency of over 21.5%. Furthermore, dopant-free BDT-TA-BTASi-based devices not only exhibited good stability in N2 (retaining 92% of the initial efficiency after 1000 h) but also showed good stability at high-temperature (60 °C) and -humidity conditions (80 ± 10%) (retaining 92 and 82% of the initial efficiency after 400 h). These results demonstrate that BDT-TA-BTASi is a promising HTM, and the study provides guidance on dopant-free polymeric HTMs to achieve high-performance PSCs
    corecore