31 research outputs found

    HLA-A and -B alleles and haplotypes in hemochromatosis probands with HFE C282Y homozygosity in central Alabama

    Get PDF
    BACKGROUND: We wanted to quantify HLA-A and -B allele and haplotype frequencies in Alabama hemochromatosis probands with HFE C282Y homozygosity and controls, and to compare results to those in other populations. METHODS: Alleles were detected using DNA-based typing (probands) and microlymphocytotoxicity (controls). RESULTS: Alleles were determined in 139 probands (1,321 controls) and haplotypes in 118 probands (605 controls). In probands, A*03 positivity was 0.7482 (0.2739 controls; p =< 0.0001; odds ratio (OR) 7.9); positivity for B*07, B*14, and B*56 was also increased. In probands, haplotypes A*03-B*07 and A*03-B*14 were more frequent (p < 0.0001, respectively; OR = 12.3 and 11.1, respectively). The haplotypes A*01-B*60, A*02-B*39, A*02-B*62, A*03-B*13, A*03-B*15, A*03-B*27, A*03-B*35, A*03-B*44, A*03-B*47, and A*03-B*57 were also significantly more frequent in probands. 37.3% of probands were HLA-haploidentical with other proband(s). CONCLUSIONS: A*03 and A*03-B*07 frequencies are increased in Alabama probands, as in other hemochromatosis cohorts. Increased absolute frequencies of A*03-B*35 have been reported only in the present Alabama probands and in hemochromatosis patients in Italy. Increased absolute frequencies of A*01-B*60, A*02-B*39, A*02-B*62, A*03-B*13, A*03-B*15, A*03-B*27, A*03-B*44, A*03-B*47, and A*03-B*57 in hemochromatosis cohorts have not been reported previously

    A study of 82 extended HLA haplotypes in HFE-C282Y homozygous hemochromatosis subjects: relationship to the genetic control of CD8+ T-lymphocyte numbers and severity of iron overload

    Get PDF
    BACKGROUND: It has been recently demonstrated that CD8+ T-lymphocyte numbers are genetically transmitted in association with the MHC class I region. The present study was designed with the objective of narrowing the region associated with the setting of CD8+ T-lymphocyte numbers in a population of C282Y homozygous hemochromatosis subjects, in whom a high prevalence of abnormally low CD8+ T-lymphocyte counts has been described. METHODS: The study includes 43 C282Y homozygous subjects fully characterized both phenotypically and genotypically. Clinical characterization includes measurements of iron parameters at diagnosis (transferrin saturation and serum ferritin), total body iron stores and T-cell immunophenotyping determined by flow cytometry. Genetic characterization includes HLA class I alleles (A, B and C) and four additional microsatellite markers (D6S265, D6S2222, D6S105 and D6S2239) spanning 5 Megabases in the 6p21.3 region. RESULTS: Eighty-two extended C282Y carrying haplotypes were defined. Single-locus analysis revealed that the HLA-A region was associated with CD8+ T-cell numbers. Multivariate analysis showed that the combinations of the most common HLA-A alleles (HLA-A*03, -A*02 and -A*01) were associated with significantly lower numbers of CD8+ T-lymphocytes (0.30 ± 0.14 × 10(6)/ml), in comparison with subjects carrying only one copy of those alleles (0.46 ± 0.19 × 10(6)/ml) and subjects without any copy of those alleles (0.79 ± 0.15 × 10(6)/ml;p = 0.0001). No differences were observed in CD8+ T-cell counts among control subjects carrying the same combinations of HLA-A alleles (0.47 ± 0.14; 0.45 ± 0.21 and 0.41 ± 0.17 × 10(6)/ml, respectively), therefore not supporting a direct effect of HLA specificity but rather an indirect association with a locus close to HLA-A. Multivariate analysis showed that the combination of the most common HLA-A alleles also have an impact on the clinical expression of HH in terms of iron stores, in males(p = 0.0009). CONCLUSION: The present study provides evidence supporting an inextricable link between extended HLA haplotypes, CD8+ T-lymphocyte numbers and severity of iron overload in hereditary hemochromatosis(HH). It gives additional information to better define a candidate region involved in the regulation of CD8+ T-lymphocyte numbers. A new evolutionary hypothesis concerning the inheritance of the phenotype of low CD8+ T-lymphocyte numbers associated with particular ancestral HLA haplotypes carrying the C282Y mutation and its implication on the clinical heterogeneity of HH is discussed

    γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    Get PDF
    Background: There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings: We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance: These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein

    The haemochromatosis gene: a global perspective and implications for the Asia-Pacific region

    No full text
    Mutations in the haemochromatosis (HFE) gene cause most of the cases of hereditary haemochromatosis among people of Northern European ancestry while remaining a rare cause of iron overload among indigenous persons of the Asia-Pacific region. Advances in understanding of the role of the HFE protein product and other recently cloned iron transporters signify an exciting period, as previously unknown components of the iron metabolism pathway are revealed one by one. Epidemiological studies have shown that this gene is more widespread than its phenotypic expression would suggest and that the heterozygous state may be implicated in the expression of other diseases of the liver such as porphyria cutanea tarda, hepatitis C virus infection and non-alcoholic steatohepatitis. The diagnosis, management and ethical implications for clinical practice in the aftermath of this discovery are discussed. (C) 1999 Blackwell Science Asia Pty Ltd

    Isolation of CA dinucleotide repeats close to D6S105; linkage disequilibrium with haemochromatosis.

    No full text
    The gene for hereditary haemochromatosis (HC) is linked to HLA-A and D6S105 on chromosome 6p. Both markers have also been reported to display linkage disequilibrium with the disease. However, their physical localization relative to one another has not been established. We demonstrate by fluorescent in situ hybridisation that D6S105 lies at least 1-2 Mb telomeric of HLA-A. The haemochromatosis critical region extending from proximal of HLA-A to distal of D6S105 is therefore large. To improve the genetic resolution in this region more highly polymorphic markers are required. We have therefore isolated three novel CA dinucleotide repeats close to D6S105. A linkage disequilibrium study, with two of these microsatellites, in HC patients and controls lends support to the conclusion that D6S105 is a close marker to the haemochromatosis gene
    corecore