4 research outputs found

    Calophylluminophyllum (Punnai Seed Oil) derived biofuel blends: Thermal performance and engine emissions

    Get PDF
    An alternative renewable fuel resource must be identified to sustainably fulfill the expanding global energy demand. This study obtains a novel biofuel from the Punnai plant, and its physicochemical properties are evaluated against relevant standards. Conventional Diesel and Punnai oil diesel mixes are tested in an unchanged 4-stroke CI engine. As the mix ratio increases, the brake thermal efficiency decreases from 30.2% (diesel) to 26% (P40 Punnai oil diesel mix). As the percentage of blends increases, the heat-release rate decreases compared to regular diesel. The emission parameters CO, unburned HC, and smoke increase with increasing blend ratio, whereas NOx emission parameters decrease. Its natural or esterified form is suitable for a standard diesel engine. Punnai seed oil has the potential to fuel our transportation needs sustainably. Its unique energy content and ability to reduce emissions make it a promising alternative to traditional fossil fuels. With further research and development, punnai seed oil could be the driving force behind a cleaner and greener transportation future

    Influence of SiCp volume percentage on AA6063/SiCp MMC extrusion process: An experimental, theoretical and simulation analysis

    No full text
    Composites have been the most prominent incipient materials in a variety of industries over the past decades. The present work mainly investigates the influence of the SiC particulate (SiCp) weight percentage on AA6063/SiCp metal matrix composites extrusion and, it has been evaluated in extruded MMC billets for enhancing the billet quality. Graphite lubricants are used to decrease the friction between the die and the billet surface. Subsequently, the friction factor is theoretically determined and experimentally validated. It was concluded that SiCp concentration is the predominant factor influencing the extrusion load and friction factor. As a result, the extrusion load was increased with an increase in SiCp percentage. Furthermore, the experimental results were compared and validated by simulation analysis. The extruded billet surfaces were exhibited by a scanning electron microscope

    Characterization and effect of the use of safflower methyl ester and diesel blends in the compression ignition engine

    No full text
    Energy is vital to the profitable growth of every nation and to stimulate new research. Only natural resources can meet the growing energy demand in recent years, biodiesel has become very interested in the energy as well as environmental advantages that it can be combined with mineral diesel fuel in any quantity. The research focuses on the study of the replacement of diesel with a safflower methyl ester. The engine tests shall be performed using the safflower methyl ester as fuel in the DI diesel engine. The combustion, emission and performance characteristics were studied using alternative fuels and mixtures. SAfflower Methyl Ester 80% (SAME80) and SAME100 have high heat release rates. Nitrogen oxides were higher by about 50%, carbon monoxide decreased by 10%, unburnt hydrocarbon was slightly higher and the thermal efficiency was higher for the SAME than for diesel fuel

    Modelling and Simulation of Machining Attributes in dry Turning of Aircraft Materials Nimonic C263 using CBN

    No full text
    In the current scenario, machinability of the super alloys is of greater importance in an aircraft turbine engine and land-based turbine applications owing to its superior properties. However, the machinability of these alloys is found to be poor owing to its inherent properties. Hence, a predictive model has been developed based on DEFORM 3D to forecast the machining attributes such as cutting force and insert's cutting edge temperature in turning of Nimonic C263 super alloy. The dry turning trials on Nimonic C263 material were carried out based on L27 orthogonal array using CBN insert. Linear regression models were developed to predict the machining attributes. Further, multi response optimization was carried out based on desirability approach for optimizing the machining attributes. The validation test was carried out for optimal parameter values such as cutting speed: 117 m/min, feed rate: 0.055 mm/rev and depth of cut: 0.25 mm. The minimum cutting force of 304N and insert's cutting edge temperature of 468 °C were obtained at optimum level of parameters.The predicted values by FEA and linear regression model were compared with experimental results and found to be closer with minimum percentage error.The minimum percentage error obtained by FEA and linear regression model for the machining attributes (cutting force, temperature) as compared with experimental values were (0.32%, 0.23%) and (2.34%, 1.63%) respectively
    corecore