2 research outputs found

    Enhanced Electrochemical and Photocatalytic Performance of Core–Shell CuS@Carbon Quantum Dots@Carbon Hollow Nanospheres

    No full text
    A controlled structural morphology, high specific surface area, large void space, and excellent biocompatibility are typical favorable properties in electrochemical energy storage and photocatalytic studies; however, a complete understanding about this essential topic still remains a great challenge. Herein, we have developed a new type of functionalized carbon hollow-structured nanospheres based on core–shell copper sulfide@carbon quantum dots (CQDs)@carbon hollow nanosphere (CHNS) architecture. This CuS@CQDs@C HNS is accomplished by a simple, scalable, <i>in situ</i> single-step hydrothermal method to produce the material that can be employed as an electrode for electrochemical energy storage and photocatalytic applications. Impressively, the CuS@CQDs@C HNS nanostructure delivers exceptional electrochemical energy storage characteristics with high specific capacitance (618 F g<sup>–1</sup> at a current density of 1 A g<sup>–1</sup>) and an excellent rate capability with an extraordinary capacitance (462 F g<sup>–1</sup> at current density of 20 A g<sup>–1</sup>) and long cycle life (95% capacitance retention after 4000 cycles). Further, the proposed photocatalyst exhibited superior photocatalytic activity under solar light due to the efficient electron transfer, which was revealed by photoluminescence studies. Such superior electrochemical and photocatalytic performance can be ascribed to the mutual contribution of CuS, CQDs, and CHNS and unique core–shell architecture. These results exhibit that the core–shell CuS@CQDs@C HNS nanostructure is one of the potential candidates for supercapacitors and photocatalytic applications

    Highly Active and Durable Core–Shell fct-PdFe@Pd Nanoparticles Encapsulated NG as an Efficient Catalyst for Oxygen Reduction Reaction

    No full text
    Development of highly active and durable catalysts for oxygen reduction reaction (ORR) alternative to Pt-based catalyst is an essential topic of interest in the research community but a challenging task. Here, we have developed a new type of face-centered tetragonal (fct) PdFe-alloy nanoparticle-encapsulated Pd (fct-PdFe@Pd) anchored onto nitrogen-doped graphene (NG). This core–shell fct-PdFe@Pd@NG hybrid is fabricated by a facile and cost-effective technique. The effect of temperature on the transformation of face-centered cubic (fcc) to fct structure and their effect on ORR activity are systematically investigated. The core–shell fct-PdFe@Pd@NG hybrid exerts high synergistic interaction between fct-PdFe@Pd NPs and NG shell, beneficial to enhance the catalytic ORR activity and excellent durability. Impressively, core–shell fct-PdFe@Pd@NG hybrid exhibits an excellent catalytic activity for ORR with an onset potential of ∼0.97 V and a half-wave potential of ∼0.83 V versus relative hydrogen electrode, ultrahigh current density, and decent durability after 10 000 potential cycles, which is significantly higher than that of marketable Pt/C catalyst. Furthermore, the core–shell fct-PdFe@Pd@NG hybrid also shows excellent tolerance to methanol, unlike the commercial Pt/C catalyst. Thus, these findings open a new protocol for fabricating another core–shell hybrid by facile and cost-effective techniques, emphasizing great prospect in next-generation energy conversion and storage applications
    corecore