24 research outputs found

    Inherent photoluminescence properties of poly(propyl ether imine) dendrimers

    No full text
    Hydroxyl group terminated poly(propyl ether imine) dendrimers of 1 to 5 generations absorb in the region of 260-340 nm, in MeOH and aqueous solutions. Excitation of a solution of the dendrimers at 330 nm led to an emission at ∼ 390 nm. The emission intensities increased under acidic pH and in more viscous solvents. The presence of air did not affect the emission profiles, as also aging of a dendrimer solution for prolonged periods. Lifetime measurements show at least two species responsible for the emission. Anions perchlorate, periodate, nitrite, and pyridinium methyliodide quenched the fluorescence efficiently, among several anions tested

    Influence of Temperature, Relative Humidity and Seasonal Variability on Ambient Air Quality in a Coastal Urban Area

    Get PDF
    The concentration of air pollutants in ambient air is governed by the meteorological parameters such as atmospheric wind speed, wind direction, relative humidity, and temperature. This study analyses the influence of temperature and relative humidity on ambient SO2, NOx, RSPM, and SPM concentrations at North Chennai, a coastal city in India, during monsoon, post-monsoon, summer, and pre-monsoon seasons for 2010-11 using regression analysis. The results of the study show that both SO2 and NOx were negatively correlated in summer (r2=0.25 for SO2 and r2=0.15 for NOx) and moderately and positively correlated (r2=0.32 for SO2 and r2=0.51 for NOx) during post-monsoon season with temperature. RSPM and SPM had positive correlation with temperature in all the seasons except post-monsoon one. These findings indicate that the influence of temperature on gaseous pollutant (SO2 & NOx) is much more effective in summer than other seasons, due to higher temperature range, but in case of particulate, the correlation was found contradictory. The very weak to moderate correlations existing between the temperature and ambient pollutant concentration during all seasons indicate the influence of inconstant thermal variation in the coastal region. Statistically significant negative correlations were found between humidity and particulates (RSPM and SPM) in all the four seasons, but level of correlation was found moderate only during monsoon (r2=0.51 and r2=0.41) in comparison with other three seasons and no significant correlation was found between humidity and SO2, NOx in all the seasons. It is suggested from this study that the influence of humidity is effective on subsiding particulates in the coastal region

    Preparation and catalytic studies of palladium nanoparticles stabilized by dendritic phosphine ligand-functionalized silica

    No full text
    Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl<SUB>2</SUB> yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have &gt; 85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency

    Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications

    No full text
    Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved

    Structural, Optical and Electrical Properties of Thin Films Using Nebulizer Spray Pyrolysis Technique

    Get PDF
    thin films have been deposited on glass substrates at substrate temperature 400°C through nebulizer spray pyrolysis technique. X-ray diffraction (XRD) analysis shows that the films structure is changed from hexagonal to tetragonal. The high-resolution scanning electron microscopy (HRSEM) studies reveal that the substrate is well covered with a number of grains indicating compact morphology with an average grain size 50–79 nm. Energy dispersive X-ray analysis (EDAX) reveals the average ratio of the atomic percentage. Optical transmittance study shows the presence of direct transition. Band gap energy decreases from 3.33 to 2.87 eV with respect to the rise of Sn content. The electrical resistivity of the thin films was found to be 106 Ω-m
    corecore