29 research outputs found

    A Jamming Attacks Detection Approach Based on CNN based Quantum Leap Method for Wireless Sensor Network

    Get PDF
    The wireless sensor network is the most significant largest communication device. WSN has been interfacing with various wireless applications. Because the wireless application needs faster communication and less interruption, the main problem of jamming attacks on wireless networks is that jamming attack detection using various machine learning methods has been used. The reasons for jamming detection may be user behaviour-based and network traffic and energy consumption. The previous machine learning system could not present the jamming attack detection accuracy because the feature selection model of Chi-Squared didn’t perform well for jamming attack detections which determined takes a large dataset to be classified to find the high accuracy for jamming attack detection. To resolve this problem, propose a CNN-based quantum leap method that detects high accuracy for jamming attack detections the WSN-DS dataset collected by the Kaggle repository. Pre-processing using the Z-score Normalization technique will be applied, performing data deviations and assessments from the dataset, and collecting data and checking or evaluating data. Fisher’s Score is used to select the optimal feature of a jamming attack. Finally, the proposed CNN-based quantum leap is used to classify the jamming attacks. The CNN-based quantum leap simulation shows the output for jamming attacks with high precision, high detection, and low false alarm detection

    Ideal Bandgap in a 2D Ruddlesden-Popper Perovskite Chalcogenide for Single-junction Solar Cells

    Full text link
    Transition metal perovskite chalcogenides (TMPCs) are explored as stable, environmentally friendly semiconductors for solar energy conversion. They can be viewed as the inorganic alternatives to hybrid halide perovskites, and chalcogenide counterparts of perovskite oxides with desirable optoelectronic properties in the visible and infrared part of the electromagnetic spectrum. Past theoretical studies have predicted large absorption coefficient, desirable defect characteristics, and bulk photovoltaic effect in TMPCs. Despite recent progresses in polycrystalline synthesis and measurements of their optical properties, it is necessary to grow these materials in high crystalline quality to develop a fundamental understanding of their optical properties and evaluate their suitability for photovoltaic application. Here, we report the growth of single crystals of a two-dimensional (2D) perovskite chalcogenide, Ba3Zr2S7, with a natural superlattice-like structure of alternating double-layer perovskite blocks and single-layer rock salt structure. The material demonstrated a bright photoluminescence peak at 1.28 eV with a large external luminescence efficiency of up to 0.15%. We performed time-resolved photoluminescence spectroscopy on these crystals and obtained an effective recombination time of ~65 ns. These results clearly show that 2D Ruddlesden-Popper phases of perovskite chalcogenides are promising materials to achieve single-junction solar cells.Comment: 4 Figure

    Built-in and induced polarization across LaAlO3_3/SrTiO3_3 heterojunctions

    Full text link
    Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar \lao ~thin films grown on \sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93 meV/\AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in \sto, illuminating a unique property of \sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201

    Colossal optical anisotropy from atomic-scale modulations

    Full text link
    In modern optics, materials with large birefringence ({\Delta}n, where n is the refractive index) are sought after for polarization control (e.g. in wave plates, polarizing beam splitters, etc.), nonlinear optics and quantum optics (e.g. for phase matching and production of entangled photons), micromanipulation, and as a platform for unconventional light-matter coupling, such as Dyakonov-like surface polaritons and hyperbolic phonon polaritons. Layered "van der Waals" materials, with strong intra-layer bonding and weak inter-layer bonding, can feature some of the largest optical anisotropy; however, their use in most optical systems is limited because their optic axis is out of the plane of the layers and the layers are weakly attached, making the anisotropy hard to access. Here, we demonstrate that a bulk crystal with subtle periodic modulations in its structure -- Sr9/8TiS3 -- is transparent and positive-uniaxial, with extraordinary index n_e = 4.5 and ordinary index n_o = 2.4 in the mid- to far-infrared. The excess Sr, compared to stoichiometric SrTiS3, results in the formation of TiS6 trigonal-prismatic units that break the infinite chains of face-shared TiS6 octahedra in SrTiS3 into periodic blocks of five TiS6 octahedral units. The additional electrons introduced by the excess Sr subsequently occupy the TiS6 octahedral blocks to form highly oriented and polarizable electron clouds, which selectively boost the extraordinary index n_e and result in record birefringence ({\Delta}n > 2.1 with low loss). The connection between subtle structural modulations and large changes in refractive index suggests new categories of anisotropic materials and also tunable optical materials with large refractive-index modulation and low optical losses.Comment: Main text + supplementar

    High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals

    Get PDF
    Crystalline solids exhibiting glass-like thermal conductivity have attracted substantial attention both for fundamental interest and applications such as thermoelectrics. In most crystals, the competition of phonon scattering by anharmonic interactions and crystalline imperfections leads to a non-monotonic trend of thermal conductivity with temperature. Defect-free crystals that exhibit the glassy trend of low thermal conductivity with a monotonic increase with temperature are desirable because they are intrinsically thermally insulating while retaining useful properties of perfect crystals. However, this behavior is rare, and its microscopic origin remains unclear. Here, we report the observation of ultralow and glass-like thermal conductivity in a hexagonal perovskite chalcogenide single crystal, BaTiS₃, despite its highly symmetric and simple primitive cell. Elastic and inelastic scattering measurements reveal the quantum mechanical origin of this unusual trend. A two-level atomic tunneling system exists in a shallow double-well potential of the Ti atom and is of sufficiently high frequency to scatter heat-carrying phonons up to room temperature. While atomic tunneling has been invoked to explain the low-temperature thermal conductivity of solids for decades, our study establishes the presence of sub-THz frequency tunneling systems even in high-quality, electrically insulating single crystals, leading to anomalous transport properties well above cryogenic temperatures

    Unconventional Charge-density-wave Order in a Dilute d-band Semiconductor

    Full text link
    Electron-lattice coupling effects in low dimensional materials give rise to charge density wave (CDW) order and phase transitions. These phenomena are critical ingredients for superconductivity and predominantly occur in metallic model systems such as doped cuprates, transition metal dichalcogenides, and more recently, in Kagome lattice materials. However, CDW in semiconducting systems, specifically at the limit of low carrier concentration region, is uncommon. Here, we combine electrical transport, synchrotron X-ray diffraction and optical spectroscopy to discover CDW order in a quasi-one-dimensional (1D), dilute d-band semiconductor, BaTiS3, which suggests the existence of strong electron-phonon coupling. The CDW state further undergoes an unusual transition featuring a sharp increase in carrier mobility. Our work establishes BaTiS3 as a unique platform to study the CDW physics in the dilute filling limit to explore novel electronic phases

    In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis

    Get PDF
    Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis
    corecore