9 research outputs found

    Molecular interplay between leptin, insulin-like growth factor-1, and β-amyloid in organotypic slices from rabbit hippocampus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence shows that the insulin-like growth factor-1 (IGF-1) and leptin reduce β-amyloid (Aβ) production and tau phosphorylation, two major hallmarks of Alzheimer's disease (AD). IGF-1 expression involves the JAK/STAT pathway and the expression of leptin is regulated by the mammalian target of rapamycin complex 1 (mTORC1). We have previously shown that Aβ reduces leptin by inhibiting the mTORC1 pathway and Aβ was also suggested to inhibit the JAK/STAT pathway, potentially attenuating IGF-1 expression. As IGF-1 can activate mTORC1 and leptin can modulate JAK/STAT pathway, we determined the extent to which IGF-1 and leptin can upregulate the expression of one another and protect against Aβ-induced downregulation.</p> <p>Results</p> <p>We demonstrate that incubation of organotypic slices from adult rabbit hippocampus with Aβ42 downregulates IGF-1 expression by inhibiting JAK2/STAT5 pathway. Leptin treatment reverses these Aβ42 effects on IGF-1 and treatment with the STAT5 inhibitor completely abrogated the leptin-induced increase in IGF-1. Furthermore, EMSA and ChIP analyses revealed that leptin increases the STAT5 binding to the IGF-1 promoter. We also show that IGF-1 increases the expression of leptin and reverses the Aβ42-induced attenuation in leptin expression via the activation of mTORC1 signaling as the mTORC1 inhibitor rapamycin completely precluded the IGF-1-induced increase in leptin expression.</p> <p>Conclusion</p> <p>Our results demonstrate for the first time that Aβ42 downregulates IGF-1 expression and that leptin and IGF-1 rescue one another from downregulation by Aβ42. Our study provides a valuable insight into the leptin/IGF-1/Aβ interplay that may be relevant to the pathophysiology of AD.</p

    Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) and age-related macular degeneration (AMD) share several pathological hallmarks including β-amyloid (Aβ) accumulation, oxidative stress, and apoptotic cell death. The causes of AD and AMD are likely multi-factorial with several factors such as diet, environment, and genetic susceptibility participating in the pathogenesis of these diseases. Epidemiological studies correlated high plasma cholesterol levels with high incidence of AD, and feeding rabbits with a diet rich in cholesterol has been shown to induce AD-like pathology in rabbit brain. High intake of cholesterol and saturated fat were also long been suspected to increase the risk for AMD. However, the extent to which cholesterol-enriched diet may also cause AMD-like features in rabbit retinas is not well known.</p> <p>Methods</p> <p>Male New Zealand white rabbits were fed normal chow or a 2% cholesterol-enriched diet for 12 weeks. At necropsy, animals were perfused with Dulbecco's phosphate-buffered saline and the eyes were promptly removed. One eye of each animal was used for immunohistochemistry and retina dissected from the other eye was used for Western blot, ELISA assays, spectrophotometry and mass spectrometry analyses.</p> <p>Results</p> <p>Increased levels of Aβ, decreased levels of the anti-apoptotic protein Bcl-2, increased levels of the pro-apoptotic Bax and gadd153 proteins, emergence of TUNEL-positive cells, and increased generation of reactive oxygen species were found in retinas from cholesterol-fed compared to normal chow-fed rabbits. Additionally, astrogliosis, drusen-like debris and cholesterol accumulations in retinas from cholesterol-fed rabbits were observed. As several lines of evidence suggest that oxidized cholesterol metabolites (oxysterols) may be the link by which cholesterol contributes to the pathogenesis of AMD, we determined levels of oxysterols and found a dramatic increase in levels of oxysterols in retinas from cholesterol-fed rabbits.</p> <p>Conclusions</p> <p>Our results suggest that cholesterol-enriched diets cause retinal degeneration that is relevant to AMD. Furthermore, our data suggests high cholesterol levels and subsequent increase in the cholesterol metabolites as potential culprits to AMD.</p

    Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of the liver × receptors (LXRs) by exogenous ligands stimulates the degradation of β-amyloid 1–42 (Aβ42), a peptide that plays a central role in the pathogenesis of Alzheimer's disease (AD). The oxidized cholesterol products (oxysterols), 24-hydroxycholesterol (24-OHC) and 27-hydroxycholesterol (27-OHC), are endogenous activators of LXRs. However, the mechanisms by which these oxysterols may modulate Aβ42 levels are not well known.</p> <p>Results</p> <p>We determined the effect of 24-OHC and/or 27-OHC on Aβ generation in SH-SY5Y cells. We found that while 27-OHC increases levels of Aβ42, 24-OHC did not affect levels of this peptide. Increased Aβ42 levels with 27-OHC are associated with increased levels of β-amyloid precursor protein (APP) as well as β-secretase (BACE1), the enzyme that cleaves APP to yield Aβ. Unchanged Aβ42 levels with 24-OHC are associated with increased levels of sAPPα, suggesting that 24-OHC favors the processing of APP to the non-amyloidogenic pathway. Interestingly, 24-OHC, but not 27-OHC, increases levels of the ATP-binding cassette transporters, ABCA1 and ABCG1, which regulate cholesterol transport within and between cells.</p> <p>Conclusion</p> <p>These results suggest that cholesterol metabolites are linked to Aβ42 production. 24-OHC may favor the non-amyloidogenic pathway and 27-OHC may enhance production of Aβ42 by upregulating APP and BACE1. Regulation of 24-OHC: 27-OHC ratio could be an important strategy in controlling Aβ42 levels in AD.</p

    The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) and age-related macular degeneration (AMD) share several pathological features including β-amyloid (Aβ) peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC) causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD.</p> <p>Methods</p> <p>ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER) stress markers, Ca<sup>2+ </sup>homeostasis, glutathione depletion, reactive oxygen species (ROS) generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays.</p> <p>Results</p> <p>27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP), reduced mitochondrial membrane potential, triggered Ca<sup>2+ </sup>dyshomeostasis, increased levels of the nuclear factor κB (NFκB) and heme-oxygenase 1 (HO-1), two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death.</p> <p>Conclusions</p> <p>The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for both AMD and AD.</p

    The Guinea Pig as a model for sporadic Alzheimer's Disease (AD): the impact of cholesterol intake on expression of AD-related genes

    Get PDF
    Extent: 12p.We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase) transcription and down-regulation of ADAM10 (α-secretase) transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes.Mathew J. Sharman, Seyyed H. Moussavi Nik, Mengqi M. Chen, Daniel Ong, Linda Wijaya, Simon M. Laws, Kevin Taddei, Morgan Newman, Michael Lardelli, Ralph N. Martins, Giuseppe Verdil

    Diabetes Type II: A Risk Factor for Depression–Parkinson–Alzheimer?

    No full text
    corecore