36 research outputs found

    Lead Inhibition of DNA-Binding Mechanism of Cys 2 His 2 Zinc Finger Proteins

    Get PDF
    ABSTRACT The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys 2 His 2 zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 M lead ions and completely inhibited by 10 to 20 M lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of ␤-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in ϳ5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys 2 His 2 finger protein, but not by the nonfinger protein AP2. Inhibition of Cys 2 His 2 zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease

    Identification of a TFIIIa binding site on the 5′ flanking region of the TFIIIA gene

    Full text link

    DNA unwinding ability of Xenopus

    No full text

    Binding of Xenopus

    No full text

    Internal deletion mutants of Xenopus

    No full text

    Distinguishing and phenotype monitoring of traumatic brain injury and post-concussion syndrome including chronic migraine in serum of Iraq and Afghanistan war veterans.

    No full text
    Traumatic Brain Injury (TBI) and persistent post-concussion syndrome (PCS) including chronic migraine (CM) are major health issues for civilians and the military. It is important to understand underlying biochemical mechanisms of these conditions, and be able to monitor them in an accurate and minimally invasive manner. This study describes the initial use of a novel serum analytical platform to help distinguish TBI patients, including those with post-traumatic headache (PTH), and to help identify phenotypes at play in these disorders. The hypothesis is that physiological responses to disease states like TBI and PTH and related bodily stresses are reflected in biomolecules in the blood in disease-specific manner. Leave one out (serum sample) cross validations (LOOCV) and sample randomizations were utilized to distinguished serum samples from the following TBI patient groups: TBI +PTSD + CM + severe depression (TBI "most affected" group) vs healthy controls, TBI "most affected" vs TBI, TBI vs controls, TBI + CM vs controls, and TBI + CM vs TBI. Inter-group discriminatory p values were ≤ 10-10, and sample group randomizations resulted in p non-significant values. Peptide/protein identifications of discriminatory mass peaks from the TBI "most affected" vs controls and from the TBI plus vs TBI minus CM groups yielded information of the cellular/molecular effects of these disorders (immune responses, amyloidosis/Alzheimer's disease/dementia, neuronal development). More specific biochemical disease effects appear to involve blood brain barrier, depression, migraine headache, autoimmunity, and autophagy pathways. This study demonstrated the ability for the first time of a novel, accurate, biomarker platform to monitor these conditions in serum, and help identify biochemical relationships leading to better understanding of these disorders and to potential therapeutic approaches

    Sera Protein Signatures of Endometrial Cancer Lymph Node Metastases

    No full text
    The presence of lymph node metastases in endometrial cancer patients is a critical factor guiding treatment decisions; however, surgical and imaging methods for their detection are limited by morbidity and inaccuracy. To determine if sera can predict the presence of positive lymph nodes, sera collected from endometrial cancer patients with or without lymph node metastases, and benign gynecology surgical patients (N = 20 per group) were subjected to electron spray ionization mass spectrometry (ES-MS). Peaks that were significantly different among the groups were evaluated by leave one out cross validation (LOOCV) for their ability to differentiation between the groups. Proteins in the peaks were identified by MS/MS of five specimens in each group. Ingenuity Pathway Analysis was used to predict pathways regulated by the protein profiles. LOOCV of sera protein discriminated between each of the group comparisons and predicted positive lymph nodes. Pathways implicated in metastases included loss of PTEN activation and PI3K, AKT and PKA activation, leading to calcium signaling, oxidative phosphorylation and estrogen receptor-induced transcription, leading to platelet activation, epithelial-to-mesenchymal transition and senescence. Upstream activators implicated in these events included neurostimulation and inflammation, activation of G-Protein-Coupled Receptor Gβγ, loss of HER-2 activation and upregulation of the insulin receptor
    corecore