14 research outputs found
Porcine Head Response to Blast
Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation
Foul tip impact attenuation of baseball catcher masks using head impact metrics.
Currently, no scientific consensus exists on the relative safety of catcher mask styles and materials. Due to differences in mass and material properties, the style and material of a catcher mask influences the impact metrics observed during simulated foul ball impacts. The catcher surrogate was a Hybrid III head and neck equipped with a six degree of freedom sensor package to obtain linear accelerations and angular rates. Four mask styles were impacted using an air cannon for six 30 m/s and six 35 m/s impacts to the nasion. To quantify impact severity, the metrics peak linear acceleration, peak angular acceleration, Head Injury Criterion, Head Impact Power, and Gadd Severity Index were used. An Analysis of Covariance and a Tukey's HSD Test were conducted to compare the least squares mean between masks for each head injury metric. For each injury metric a P-Value less than 0.05 was found indicating a significant difference in mask performance. Tukey's HSD test found for each metric, the traditional style titanium mask fell in the lowest performance category while the hockey style mask was in the highest performance category. Limitations of this study prevented a direct correlation from mask testing performance to mild traumatic brain injury
Images of catcher masks used.
<p>(A) Wilson Dynalite Traditional Steel, (B) Wilson Dynalite Traditional Titanium, (C) Easton Rival Hockey Style, (D) Wilson Shock FX 2.0 Hockey Style.</p
Bar plot of reported concussions in MLB catchers shows general increasing trend since 2000.
<p>Bar plot of reported concussions in MLB catchers shows general increasing trend since 2000.</p
Illustration of mask deformation distance and coordinate axis used for linear accelerations and angular rates.
<p>White Line—Initial position of mask no deformation, Red Line—Final position of mask maximum deformation.</p
Comparison of linear acceleration trace sampled at 200 kHz down sampled to 512 Hz.
<p>Comparison of linear acceleration trace sampled at 200 kHz down sampled to 512 Hz.</p
Summary of results from Tukey’s HSD test.
<p>Summary of results from Tukey’s HSD test.</p
Illustration of the test setup.
<p>Air cannon made of 3 in, schedule 40 pipe with 1.52 m barrel placed 1.5 meters from the front of the mask.</p