8,763 research outputs found

    First-class patterns

    Full text link
    Pure pattern calculus supports pattern-matching functions in which patterns are first-class citizens that can be passed as parameters, evaluated and returned as results. This new expressive power supports two new forms of polymorphism. Path polymorphism allows recursive functions to traverse arbitrary data structures. Pattern polymorphism allows patterns to be treated as parameters which may be collected from various sources or generated from training data. A general framework for pattern calculi is developed. It supports a proof of confluence that is parameterised by the nature of the matching algorithm, suitable for the pure pattern calculus and all other known pattern calculi. © 2009 Copyright Cambridge University Press

    A number conserving theory for topologically protected degeneracy in one-dimensional fermions

    Full text link
    Semiconducting nanowires in proximity to superconductors are among promising candidates to search for Majorana fermions and topologically protected degeneracies which may ultimately be used as building blocks for topological quantum computers. The prediction of neutral Majorana fermions in the proximity-induced superconducting systems ignores number-conservation and thus leaves open the conceptual question of how a topological degeneracy that is robust to all local perturbations arises in a number-conserving system. In this work, we study how local attractive interactions generate a topological ground-state near-degeneracy in a quasi one-dimensional superfluid using bosonization of the fermions. The local attractive interactions opens a topological quasiparticle gap in the odd channel wires (with more than one channel) with end Majorana modes associated with a topological near-degeneracy. We explicitly study the robustness of the topological degeneracy to local perturbations and find that such local perturbations result in quantum phase slips which split of the topological degeneracy by an amount that does not decrease exponentially with the length of the wire, but still decreases rapidly if the number of channels is large. Therefore a bulk superconductor with a large number of channels is crucial for true topological degeneracy.Comment: 11 pages, 2 figure

    Diamagnetic susceptibility obtained from the six-vertex model and its implications for the high-temperature diamagnetic state of cuprate superconductors

    Full text link
    We study the diamagnetism of the 6-vertex model with the arrows as directed bond currents. To our knowledge, this is the first study of the diamagnetism of this model. A special version of this model, called F model, describes the thermal disordering transition of an orbital antiferromagnet, known as d-density wave (DDW), a proposed state for the pseudogap phase of the high-Tc cuprates. We find that the F model is strongly diamagnetic and the susceptibility may diverge in the high temperature critical phase with power law arrow correlations. These results may explain the surprising recent observation of a diverging low-field diamagnetic susceptibility seen in some optimally doped cuprates within the DDW model of the pseudogap phase.Comment: 4.5 pages, 2 figures, revised version accepted in Phys. Rev. Let

    Fresh-Water Kill Of Oysters (Crassostrea virginica) In James River, Virginia, 1958

    Get PDF
    Fresh water invaded the upper half of James River seed area in winter and spring of 1958. Many oysters died between 1 May and 15 ·June. On some grounds, salinities did not become suitable until l July when temperature had reached 23°c. Death rates of native oysters were as high as 90 percent. Oysters exposed to fresh water from midwinter were conditioned to a low physiological state as evidenced by absence of heart beat, ciliary motion and mantle sensitivity when first opened. Oysters held in trays at one extremity of the seed area withstood fresh-water conditions similarly to oysters on natural bottom--in accordance with their previous history of exposure. Oysters in pans of fresh.well water at the Laboratory endured unsuitable conditions for similar periods as those in James River. Once broken, the conditioned state could not be regained at temperatures favoring activity. Apparently slow conditioning of oysters at low salinities and at low temperatures induces a state of narcosis which permits conservation of food supply and evasion of effects of temperature rises. This lasts only as long as closure is continuously enforced by fresh water or other factors

    Gating NO Release from Nitric Oxide Synthase

    Get PDF
    We have investigated the kinetics of NO escape from Geobacillus stearothermophilus nitric oxide synthase (gsNOS). Previous work indicated that NO release was gated at position 223 in mammalian enzymes; our kinetics experiments include mutants at that position along with measurements on the wild type enzyme. Employing stopped-flow UV–vis methods, reactions were triggered by mixing a reduced enzyme/N-hydroxy-l-arginine complex with an aerated buffer solution. NO release kinetics were obtained for wt NOS and three mutants (H134S, I223V, H134S/I223V). We have confirmed that wt gsNOS has the lowest NO release rate of known NOS enzymes, whether bacterial or mammalian. We also have found that steric clashes at positions 223 and 134 hinder NO escape, as judged by enhanced rates in the single mutants. The empirical rate of NO release from the gsNOS double mutant (H134/I223V) is nearly as rapid as that of the fastest mammalian enzymes, demonstrating that both positions 223 and 134 function as gates for escape of the product diatomic molecule
    • …
    corecore