8 research outputs found

    Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ

    No full text
    High-energy diffraction microscopy (HEDM) constitutes a suite of combined X-ray characterization methods, which hold the unique advantage of illuminating the microstructure and micromechanical state of a material during concurrent in situ mechanical deformation. The data generated from HEDM experiments provides a heretofore unrealized opportunity to validate meso-scale modeling techniques, such as crystal plasticity finite element modeling (CPFEM), by explicitly testing the accuracy of these models at the length scales where the models predict their response. Combining HEDM methods with in situ loading under known and controlled boundary conditions represents a significant challenge, inspiring the recent development of a new high-precision rotation and axial motion system for simultaneously rotating and axially loading a sample. In this paper, we describe the initial HEDM dataset collected using this hardware on an alpha-titanium alloy (Ti-7Al) under in situ tensile deformation at the Advanced Photon Source, Argonne National Laboratory. We present both near-field HEDM data that maps out the grain morphology and intragranular crystallographic orientations and far-field HEDM data that provides the grain centroid, grain average crystallographic orientation, and grain average elastic strain tensor for each grain. Finally, we provide a finite element mesh that can be utilized to simulate deformation in the volume of this Ti-7Al specimen. The dataset supporting this article is available in the National Institute of Standards and Technology (NIST) repository (http://hdl.handle.net/11256/599)

    Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ

    Get PDF
    High-energy diffraction microscopy (HEDM) constitutes a suite of combined X-ray characterization methods, which hold the unique advantage of illuminating the microstructure and micromechanical state of a material during concurrent in situ mechanical deformation. The data generated from HEDM experiments provides a heretofore unrealized opportunity to validate meso-scale modeling techniques, such as crystal plasticity finite element modeling (CPFEM), by explicitly testing the accuracy of these models at the length scales where the models predict their response. Combining HEDM methods with in situ loading under known and controlled boundary conditions represents a significant challenge, inspiring the recent development of a new high-precision rotation and axial motion system for simultaneously rotating and axially loading a sample. In this paper, we describe the initial HEDM dataset collected using this hardware on an alpha-titanium alloy (Ti-7Al) under in situ tensile deformation at the Advanced Photon Source, Argonne National Laboratory. We present both near-field HEDM data that maps out the grain morphology and intragranular crystallographic orientations and far-field HEDM data that provides the grain centroid, grain average crystallographic orientation, and grain average elastic strain tensor for each grain. Finally, we provide a finite element mesh that can be utilized to simulate deformation in the volume of this Ti-7Al specimen. The dataset supporting this article is available in the National Institute of Standards and Technology (NIST) repository (http://hdl.handle.net/11256/599)

    A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    No full text
    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability

    A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    No full text
    <p>High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modelingtools. A suite of techniques have been developed by the x-ray community for characterizing the 3Dstructure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.</p
    corecore