1 research outputs found

    Inside Perovskites: Quantum Luminescence from Bulk Cs<sub>4</sub>PbBr<sub>6</sub> Single Crystals

    No full text
    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission line width, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behavior, which is contradictory to the well-studied APbX<sub>3</sub> perovskites. In this work, we synthesize single crystals of Cs<sub>4</sub>PbBr<sub>6</sub> 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behavior reminiscent of a quantum confined structure rather than a typical bulk perovskite material
    corecore