5 research outputs found

    Preliminary evaluations of 3-dimensional human skin models for their ability to facilitate in vitro the long-term development of the debilitating obligatory human parasite Onchocerca volvulus.

    No full text
    Onchocerciasis also known as river blindness is a neglected tropical disease and the world's second-leading infectious cause of blindness in humans; it is caused by Onchocerca volvulus. Current treatment with ivermectin targets microfilariae and transmission and does not kill the adult parasites, which reside within subcutaneous nodules. To support the development of macrofilaricidal drugs that target the adult worm to further support the elimination of onchocerciasis, an in-depth understanding of O. volvulus biology especially the factors that support the longevity of these worms in the human host (>10 years) is required. However, research is hampered by a lack of access to adult worms. O. volvulus is an obligatory human parasite and no small animal models that can propagate this parasite were successfully developed. The current optimized 2-dimensional (2-D) in vitro culturing method starting with O. volvulus infective larvae does not yet support the development of mature adult worms. To overcome these limitations, we have developed and applied 3-dimensional (3-D) culture systems with O. volvulus larvae that simulate the human in vivo niche using in vitro engineered skin and adipose tissue. Our proof of concept studies have shown that an optimized indirect co-culture of in vitro skin tissue supported a significant increase in growth of the fourth-stage larvae to the pre-adult stage with a median length of 816-831 μm as compared to 767 μm of 2-D cultured larvae. Notably, when larvae were co-cultured directly with adipose tissue models, a significant improvement for larval motility and thus fitness was observed; 95% compared to 26% in the 2-D system. These promising co-culture concepts are a first step to further optimize the culturing conditions and improve the long-term development of adult worms in vitro. Ultimately, it could provide the filarial research community with a valuable source of O. volvulus worms at various developmental stages, which may accelerate innovative unsolved biomedical inquiries into the parasite's biology

    Drugs that target early stages of Onchocerca volvulus: A revisited means to facilitate the elimination goals for onchocerciasis.

    No full text
    Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of "prophylactic" drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These "prophylactic" drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections

    Pyrvinium Pamoate and Structural Analogs Are Early Macrofilaricide Leads

    No full text
    Onchocerciasis and lymphatic filariasis are neglected tropical diseases caused by infection with filarial worms. Annual or biannual mass drug administration with microfilaricidal drugs that kill the microfilarial stages of the parasites has helped reduce infection rates and thus prevent transmission of both infections. However, success depends on high population coverage that is maintained for the duration of the adult worm’s lifespan. Given that these filarial worms can live up to 14 years in their human hosts, a macrofilaricidal drug would vastly accelerate elimination efforts. Here, we have evaluated the repurposed drug pyrvinium pamoate as well as newly synthesized analogs of pyrvinium for their efficacy against filarial worms in vitro and in vivo. We found that pyrvinium pamoate, tetrahydropyrvinium and one of the analogs were highly potent in inhibiting worms in in vitro whole-worm screening assays, and that all three compounds reduced female worm fecundity and inhibited embryogenesis in the Brugia pahangi-gerbil in vivo model of infection
    corecore