47 research outputs found

    Effects of anti-triadin antibody on Ca2+ release from sarcoplasmic reticulum

    Get PDF
    AbstractThe monoclonal antibody, mAb GE 4.90, raised against triadin, a 95 kDa protein of sarcoplasmic reticulum (SR), inhibits the slow phase of Ca2+ release from SR following depolarization of the T-tubule moiety of the triad. The antibody has virtually no effect on the fast phase of depolarization-induced Ca2+ release nor on caffeine-induced Ca2+ release. Since the slow phase of depolarization-induced Ca2+ release is also inhibited by dihydropyridines (DHP), these results suggest that triadin may be involved in the functional coupling between the DHP receptor and the SR Ca2+ channel

    Naphthazarin and Methylnaphthazarin Cause Vascular Dysfunction by Impairment of Endothelium-Derived Nitric Oxide and Increased Superoxide Anion Generation

    No full text
    The effects of the naphthoquinone analogue, naphthazarin ( Nap), and its derivative, methylnaphthazarin (MetNap), on vascular reactivity were studied using isolated rat aortic rings and human umbilical vein endothelial cells (HUVECs). In this study, we determined vessel tension, nitric oxide ( NO) formation, endothelial nitric oxide synthase (eNOS) activity, eNOS protein expression, and superoxide anion (O2* -) generation in an effort to evaluate the effect of Nap and MetNap on the impairment of the NO-mediated pathway. Lower concentrations of Nap (0.01-1 microM) and MetNap (1-10 microM) concentration-dependently enhanced phenylephrine (PE )-induced vasocontraction and abrogated acetylcholine (ACh)- induced vasorelaxation in an endothelium-dependent manner. On HUVECs, both Nap and MetNap concentration-dependently inhibited NO formation induced by A23187 , and also partially inhibited nitric oxide synthase (NOS) activity. eNOS protein expression by HUVECs was not affected by treatment with Nap or MetNap, even within 24h. These data suggest that Nap and MetNap might act as inhibitors of nitric oxide synthesis in the endothelium. In addition, Nap and MetNap were also shown to generate O2*- on HUVECs with short-term treatment. We concluded that Nap and MetNap inhibited agonist-induced relaxation and induced vasocontraction in an endothelium-dependent manner, and these effects might have been due to modification of the NO content by inhibition of NOS activity and bioinactivation through O2*- generation

    Enhancing food safety management in Taiwan

    No full text
    corecore